RESUMEN
Room-temperature optoelectronic devices that operate at short-wavelength and mid-wavelength infrared ranges (one to eight micrometres) can be used for numerous applications1-5. To achieve the range of operating wavelengths needed for a given application, a combination of materials with different bandgaps (for example, superlattices or heterostructures)6,7 or variations in the composition of semiconductor alloys during growth8,9 are used. However, these materials are complex to fabricate, and the operating range is fixed after fabrication. Although wide-range, active and reversible tunability of the operating wavelengths in optoelectronic devices after fabrication is a highly desirable feature, no such platform has been yet developed. Here we demonstrate high-performance room-temperature infrared optoelectronics with actively variable spectra by presenting black phosphorus as an ideal candidate. Enabled by the highly strain-sensitive nature of its bandgap, which varies from 0.22 to 0.53 electronvolts, we show a continuous and reversible tuning of the operating wavelengths in light-emitting diodes and photodetectors composed of black phosphorus. Furthermore, we leverage this platform to demonstrate multiplexed nondispersive infrared gas sensing, whereby multiple gases (for example, carbon dioxide, methane and water vapour) are detected using a single light source. With its active spectral tunability while also retaining high performance, our work bridges a technological gap, presenting a potential way of meeting different requirements for emission and detection spectra in optoelectronic applications.
RESUMEN
The mid-wave infrared (MWIR) wavelength range plays a central role in a variety of applications, including optical gas sensing, industrial process control, spectroscopy, and infrared (IR) countermeasures. Among the MWIR light sources, light-emitting diodes (LEDs) have the advantages of simple design, room-temperature operation, and low cost. Owing to the low Auger recombination at high carrier densities and direct bandgap of black phosphorus (bP), it can serve as a high quantum efficiency emitting layer in LEDs. In this work, we demonstrate bP-LEDs exhibiting high external quantum efficiencies and wall-plug efficiencies of up to 4.43 and 1.78%, respectively. This is achieved by integrating the device with an Al2O3/Au optical cavity, which enhances the emission efficiency, and a thin transparent conducing oxide [indium tin oxide (ITO)] layer, which reduces the parasitic resistance, both resulting in order of magnitude improvements to performance.
RESUMEN
Black phosphorus has emerged as a unique optoelectronic material, exhibiting tunable and high device performance from mid-infrared to visible wavelengths. Understanding the photophysics of this system is of interest to further advance device technologies based on it. Here we report the thickness dependence of the photoluminescence quantum yield at room temperature in black phosphorus while measuring the various radiative and non-radiative recombination rates. As the thickness decreases from bulk to ~4 nm, a drop in the photoluminescence quantum yield is initially observed due to enhanced surface carrier recombination, followed by an unexpectedly sharp increase in photoluminescence quantum yield with further thickness scaling, with an average value of ~30% for monolayers. This trend arises from the free-carrier to excitonic transition in black phosphorus thin films, and differs from the behaviour of conventional semiconductors, where photoluminescence quantum yield monotonically deteriorates with decreasing thickness. Furthermore, we find that the surface carrier recombination velocity of black phosphorus is two orders of magnitude lower than the lowest value reported in the literature for any semiconductor with or without passivation; this is due to the presence of self-terminated surface bonds in black phosphorus.
RESUMEN
Thin two-dimensional (2D) material absorbers have the potential to reduce volume-dependent thermal noise in infrared detectors. However, any reduction in noise must be balanced against lower absorption from the thin layer, which necessitates advanced optical architectures. Such architectures can be particularly effective for applications that require detection only within a specific narrow wavelength range. This study presents a Fabry-Pérot cavity enhanced bP/MoS2 midwave infrared (MWIR) photodiode. This simple structure enables tunable narrow-band (down to 0.42 µm full width at half-maximum) photodetection in the 2-4 µm range by adjusting the thickness of the Fabry-Pérot cavity resonator. This is achieved while maintaining room-temperature performance metrics comparable to previously reported 2D MWIR detectors. Zero bias specific detectivity and responsivity values of up to 1.7 × 109 cm Hz1/2 W-1 and 0.11 A W-1 at λ = 3.0 µm are measured with a response time of less than 3 ns. These results introduce a promising family of 2D detectors with applications in MWIR spectroscopy.