Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(13): 1916-1934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430056

RESUMEN

BACKGROUND AND PURPOSE: Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH: BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS: In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of ß2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS: Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.


Asunto(s)
Asma , Ratones Endogámicos BALB C , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Asma/inmunología , Asma/metabolismo , Asma/terapia , Ratones , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pyroglyphidae/inmunología , Inflamación/metabolismo , Inflamación/inmunología , Citocinas/metabolismo , Femenino , Modelos Animales de Enfermedad
2.
Autophagy ; 18(9): 2150-2160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35012409

RESUMEN

Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.


Asunto(s)
Autofagia , Músculo Liso Vascular , Animales , Autofagia/fisiología , Cafeína/metabolismo , Cafeína/farmacología , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína Sequestosoma-1/metabolismo , Vía de Señalización Wnt
3.
Front Physiol ; 11: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256375

RESUMEN

Lymphedema is the clinical manifestation of impaired lymphatic transport. It remains an under-recognized and under-documented clinical condition that still lacks a cure. Despite the substantial advances in the understanding of lymphatic vessel biology and function in the past two decades, there are still unsolved questions regarding the pathophysiology of lymphedema, especially in humans. As a consequence of impaired lymphatic drainage, proteins and lipids accumulate in the interstitial space, causing the regional tissue to undergo extensive and progressive architectural changes, including adipose tissue deposition and fibrosis. These changes are also associated with inflammation. However, the temporal sequence of these events, the relationship between these events, and their interplay during the progression are not clearly understood. Here, we review our current knowledge on the pathophysiology of lymphedema derived from human and animal studies. We also discuss the possible cellular and molecular mechanisms involved in adipose tissue and collagen accumulation during lymphedema. We suggest that more studies should be dedicated to enhancing our understanding of the human pathophysiology of lymphedema to pave the way for new diagnostic and therapeutic avenues for this condition.

4.
Sci Adv ; 6(50)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33310846

RESUMEN

A functional lymphatic vasculature is essential for tissue fluid homeostasis, immunity, and lipid clearance. Although atherosclerosis has been linked to adventitial lymphangiogenesis, the functionality of aortic lymphatic vessels draining the diseased aorta has never been assessed and the role of lymphatic drainage in atherogenesis is not well understood. We develop a method to measure aortic lymphatic transport of macromolecules and show that it is impaired during atherosclerosis progression, whereas it is ameliorated during lesion regression induced by ezetimibe. Disruption of aortic lymph flow by lymphatic ligation promotes adventitial inflammation and development of atherosclerotic plaque in hypercholesterolemic mice and inhibits ezetimibe-induced atherosclerosis regression. Thus, progression of atherosclerotic plaques may result not only from increased entry of atherogenic factors into the arterial wall but also from reduced lymphatic clearance of these factors as a result of aortic lymph stasis. Our findings suggest that promoting lymphatic drainage might be effective for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aorta/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Ezetimiba/farmacología , Ezetimiba/uso terapéutico , Linfangiogénesis , Ratones , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA