Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Genomics ; 297(6): 1741-1754, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36125534

RESUMEN

The current pandemic (COVID-19) has made evident the need to approach pathogenicity from a deeper and more systematic perspective that might lead to methodologies to quickly predict new strains of microbes that could be pathogenic to humans. Here we propose as a solution a general and principled definition of pathogenicity that can be practically implemented in operational ways in a framework for characterizing and assessing the (degree of) potential pathogenicity of a microbe to a given host (e.g., a human individual) just based on DNA biomarkers, and to the point of predicting its impact on a host a priori to a meaningful degree of accuracy. The definition is based on basic biochemistry, the Gibbs free Energy of duplex formation between oligonucleotides and some deep structural properties of DNA revealed by an approximation with certain properties. We propose two operational tests based on the nearest neighbor (NN) model of the Gibbs Energy and an approximating metric (the h-distance.) Quality assessments demonstrate that these tests predict pathogenicity with an accuracy of over 80%, and sensitivity and specificity over 90%. Other tests obtained by training machine learning models on deep features extracted from DNA sequences yield scores of 90% for accuracy, 100% for sensitivity and 80% for specificity. These results hint towards the possibility of an operational, objective, and general conceptual framework for prior identification of pathogens and their impact without the cost of death or sickness in a host (e.g., humans.) Consequently, a reasonable prediction of possible pathogens might pave the way to eventually transform the way we handle and prepare for future pandemic events and mitigate the adverse impact on human health, while reducing the number of clinical trials to obtain similar results.


Asunto(s)
COVID-19 , Humanos , Virulencia/genética , Oligonucleótidos , ADN , Biomarcadores
2.
Mol Genet Genomics ; 296(5): 1161-1173, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34259913

RESUMEN

Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation amongst the human population and are key to personalized medicine. New tests are presented to distinguish pathogenic/malign (i.e., likely to contribute to or cause a disease) from nonpathogenic/benign SNPs, regardless of whether they occur in coding (exon) or noncoding (intron) regions in the human genome. The tests are based on the nearest neighbor (NN) model of Gibbs free energy landscapes of DNA hybridization and on deep structural properties of DNA revealed by an approximating metric (the h-distance) in DNA spaces of oligonucleotides of a common size. The quality assessments show that the newly defined PNPG test can classify a SNP with an accuracy about 73% for the required parameters. The best performance among machine learning models is a feed-forward neural network with fivefold cross-validation accuracy of at least 73%. These results may provide valuable tools to solve the SNP classification problem, where tools are lacking, to assess the likelihood of disease causing in unclassified SNPs. These tests highlight the significance of hybridization chemistry in SNPs. They can be applied to further the effectiveness of research in the areas of genomics and metabolomics.


Asunto(s)
Modelos Genéticos , Polimorfismo de Nucleótido Simple , Proteínas/genética , Genoma Humano , Humanos , Aprendizaje Automático , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA