Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Ecol ; 31(24): 6541-6555, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719074

RESUMEN

Genomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Genoma/genética , Genómica/métodos , Linaje , Fenotipo , Genotipo , Modelos Genéticos
2.
Nature ; 502(7469): 93-5, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23965625

RESUMEN

Sexual selection, through intra-male competition or female choice, is assumed to be a source of strong and sustained directional selection in the wild. In the presence of such strong directional selection, alleles enhancing a particular trait are predicted to become fixed within a population, leading to a decrease in the underlying genetic variation. However, there is often considerable genetic variation underlying sexually selected traits in wild populations, and consequently, this phenomenon has become a long-discussed issue in the field of evolutionary biology. In wild Soay sheep, large horns confer an advantage in strong intra-sexual competition, yet males show an inherited polymorphism for horn type and have substantial genetic variation in their horn size. Here we show that most genetic variation in this trait is maintained by a trade-off between natural and sexual selection at a single gene, relaxin-like receptor 2 (RXFP2). We found that an allele conferring larger horns, Ho(+), is associated with higher reproductive success, whereas a smaller horn allele, Ho(P), confers increased survival, resulting in a net effect of overdominance (that is, heterozygote advantage) for fitness at RXFP2. The nature of this trade-off is simple relative to commonly proposed explanations for the maintenance of sexually selected traits, such as genic capture ('good genes') and sexually antagonistic selection. Our results demonstrate that by identifying the genetic architecture of trait variation, we can determine the principal mechanisms maintaining genetic variation in traits under strong selection and explain apparently counter-evolutionary observations.


Asunto(s)
Variación Genética , Cuernos , Preferencia en el Apareamiento Animal/fisiología , Animales , Femenino , Genotipo , Masculino , Fenotipo , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Reproducción/genética , Selección Genética , Análisis de Supervivencia
3.
PLoS Biol ; 12(7): e1001917, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25072883

RESUMEN

Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host-parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.


Asunto(s)
Enfermedades Gastrointestinales/parasitología , Infecciones por Nematodos/parasitología , Animales , Peso Corporal , Femenino , Enfermedades Gastrointestinales/patología , Interacciones Huésped-Parásitos , Masculino , Infecciones por Nematodos/patología , Recuento de Huevos de Parásitos , Carga de Parásitos , Enfermedades Parasitarias en Animales/patología , Reproducción , Selección Genética , Ovinos/fisiología , Enfermedades de las Ovejas/parasitología
4.
Mol Ecol ; 25(13): 3152-68, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27135155

RESUMEN

There is ample evidence for inbreeding depression manifested as a reduction in fitness or fitness-related traits in the focal individual. In many organisms, fitness is not only affected by genes carried by the individual, but also by genes carried by their parents, for example if receiving parental care. While maternal effects have been described in many systems, the extent to which inbreeding affects fitness directly through the focal individual, or indirectly through the inbreeding coefficients of its parents, has rarely been examined jointly. The Soay sheep study population is an excellent system in which to test for both effects, as lambs receive extended maternal care. Here, we tested for both maternal and individual inbreeding depression in three fitness-related traits (birthweight and weight and hindleg length at 4 months of age) and three fitness components (first-year survival, adult annual survival and annual breeding success), using either pedigree-derived inbreeding or genomic estimators calculated using ~37 000 SNP markers. We found evidence for inbreeding depression in 4-month hindleg and weight, first-year survival in males, and annual survival and breeding success in adults. Maternal inbreeding was found to depress both birthweight and 4-month weight. We detected more instances of significant inbreeding depression using genomic estimators than the pedigree, which is partly explained through the increased sample sizes available. In conclusion, our results highlight that cross-generational inbreeding effects warrant further exploration in species with parental care and that modern genomic tools can be used successfully instead of, or alongside, pedigrees in natural populations.


Asunto(s)
Aptitud Genética , Genética de Población , Endogamia , Ovinos/genética , Animales , Peso al Nacer , Tamaño Corporal , Femenino , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Escocia
5.
Mol Ecol ; 24(8): 1810-30, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25753777

RESUMEN

Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.


Asunto(s)
Tamaño Corporal/genética , Herencia Multifactorial , Carácter Cuantitativo Heredable , Ovinos/genética , Alelos , Animales , Cromosomas/genética , Femenino , Estudios de Asociación Genética , Genotipo , Haplotipos , Funciones de Verosimilitud , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Mol Ecol ; 23(14): 3434-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24917482

RESUMEN

The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics studies in natural populations.


Asunto(s)
Genética de Población/métodos , Genómica/métodos , Modelos Genéticos , Linaje , Animales , Tamaño Corporal , Ambiente , Femenino , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Escocia , Ovinos/genética
7.
BMC Evol Biol ; 13: 29, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23379749

RESUMEN

BACKGROUND: Coevolution with parasites and population size are both expected to influence the evolution of mating rates. To gain insights into the interaction between these dual selective factors, we used populations from a coevolution experiment with the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. We maintained each experimental population at two different population sizes. We assayed the mating behaviour of both males and females from coevolved and paired non-coevolved control populations after 24 generations of coevolution with parasites. RESULTS: Males from large, coevolved populations (i.e. ancestors were exposed to parasites) showed a reduced eagerness to mate compared to males from large, non-coevolved populations. But in small populations, coevolution did not lead to decreased male mating rates. Coevolved females from both large and small populations appeared to be more willing to accept mating than non-coevolved females. CONCLUSIONS: This study provides unique, experimental insights into the combined roles of coevolving parasites and population size on the evolution of mating rate. Furthermore, we find that males and females respond differently to the same environmental conditions. Our results show that parasites can be key determinants of the sexual behaviour of their hosts.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos , Nosema/fisiología , Conducta Sexual Animal , Tribolium/parasitología , Animales , Femenino , Masculino , Densidad de Población
8.
BMC Evol Biol ; 12: 11, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22280468

RESUMEN

BACKGROUND: Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses. RESULTS: In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes. CONCLUSIONS: Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos , Nosema/genética , Tribolium/genética , Animales , Aptitud Genética , Nosema/patogenicidad , Nosema/fisiología , Tribolium/parasitología , Virulencia
9.
BMC Evol Biol ; 12: 18, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22330615

RESUMEN

BACKGROUND: One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. RESULTS: By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. CONCLUSIONS: This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos , Nosema/genética , Recombinación Genética , Tribolium/genética , Tribolium/parasitología , Animales , Modelos Lineales , Meiosis , Nosema/fisiología , Tribolium/citología
10.
Am Nat ; 180(4): 520-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22976014

RESUMEN

The evolution of reproductive isolation among populations is often the result of selective forces. Among those, parasites exert strong selection on host populations and can thus also potentially drive reproductive isolation. This hypothesis has yet to be explicitly tested, and here we set up a multigenerational coevolution experiment to explore this possibility. Five lines of Tribolium castaneum were allowed to coevolve with their natural parasite, Nosema whitei; five paired lines of identical origin were maintained in the absence of parasites. After 17 generations, we measured resistance within and reproductive isolation between all lines. Host lines from the coevolution treatment had considerably higher levels of resistance against N. whitei than their paired host lines, which were maintained in the absence of parasites. Reproductive isolation was greater in the coevolved selection regime and correlated with phenotypic differentiation in parasite resistance between coevolved host lines. This suggests the presence of a selection-driven genetic correlation between offspring number and resistance. Our results show that parasites can be a driving force in the evolution of reproductive isolation and thus potentially speciation.


Asunto(s)
Evolución Biológica , Aislamiento Reproductivo , Tribolium/fisiología , Animales , Especiación Genética , Nosema/fisiología , Selección Genética , Tribolium/parasitología
11.
Proc Biol Sci ; 278(1703): 218-24, 2011 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20685701

RESUMEN

Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception.


Asunto(s)
Variación Genética , Interacciones Huésped-Parásitos , Nosema/fisiología , Tribolium/parasitología , Alelos , Animales , Evolución Biológica , Flujo Genético , Genotipo , Hibridación Genética , Densidad de Población , Selección Genética , Tribolium/genética
12.
Genetics ; 179(4): 2113-23, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689891

RESUMEN

Tetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids. We present a simple likelihood-based approach that is able to incorporate disomic, tetrasomic, and intermediate inheritance models and estimates the double-reduction rate. Our model shows that inheritance of microsatellite markers in natural tetraploids of Rorippa amphibia and R. sylvestris is tetrasomic, confirming their autotetraploid origin. However, in F(1) hybrids inheritance was intermediate to disomic and tetrasomic inheritance. Apparently, in meiosis, chromosomes paired preferentially with the homolog from the same parental species, but not strictly so. Detected double-reduction rates were low. We tested the general applicability of our model, using published segregation data. In two cases, an intermediate inheritance model gave a better fit to the data than the tetrasomic model advocated by the authors. The existence of inheritance intermediate to disomic and tetrasomic has important implications for linkage mapping and population genetics and hence breeding programs of tetraploids. Methods that have been developed for either disomic or tetrasomic tetraploids may not be generally applicable, particularly in systems where hybridization is common.


Asunto(s)
Segregación Cromosómica , Repeticiones de Microsatélite , Modelos Genéticos , Poliploidía , Rorippa/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Hibridación Genética , Patrón de Herencia
13.
Evolution ; 62(9): 2381-92, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18564375

RESUMEN

Genetically coupled antagonistic coevolution between host and parasites can select for the maintenance of recombination in the host. Mechanistically, maintenance of recombination relies on epistatic interactions between resistance genes creating linkage disequilibria (LD). The role of epistasis in host resistance traits is however only partly understood. Therefore, we applied the joint scaling principle to assess epistasis and other nonadditive genetic components of two resistance traits, survival, and parasite spore load, in population crosses of the red flour beetle Tribolium castanaeum under infections with the microsporidian Nosema whitei. We found nonadditive components only in infected populations but not in control populations. The genetic architecture underlying survival under parasite infection was more complex than that of spore load. Accordingly, the observed negative correlation between survival and spore load was mainly based on a correlation between shared additive components. Breakdown of resistance was especially strong in F2 crosses between resistant lines indicating that multiple epistatic routes can lead to the same adaptation. In general, the wide range of nonoverlapping genetic components between crosses indicated that parasite resistance in T. castanaeum can be understood as a multi peaked fitness landscape with epistasis contributing substantially to phenotypic differentiation in resistance.


Asunto(s)
Epistasis Genética , Interacciones Huésped-Parásitos , Nosema/fisiología , Tribolium/genética , Animales , Cruzamientos Genéticos , Fenotipo , Recombinación Genética , Selección Genética , Esporas Fúngicas , Tribolium/inmunología , Tribolium/parasitología
14.
Genetics ; 208(1): 349-364, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127262

RESUMEN

How do environmental conditions influence selection and genetic variation in wild populations? There is widespread evidence for selection-by-environment interactions (S*E), but we reviewed studies of natural populations estimating the extent of genotype-by-environment interactions (G*E) in response to natural variation in environmental conditions and found that evidence for G*E appears to be rare within single populations in the wild. Studies estimating the simultaneous impact of environmental variation on both selection and genetic variation are especially scarce. Here, we used 24 years of data collected from a wild Soay sheep population to quantify how an important environmental variable, population density, impacts upon (1) selection through annual contribution to fitness and (2) expression of genetic variation, in six morphological and life history traits: body weight, hind leg length, parasite burden, horn length, horn growth, and testicular circumference. Our results supported the existence of S*E: selection was stronger in years of higher population density for all traits apart from horn growth, with directional selection being stronger under more adverse conditions. Quantitative genetic models revealed significant additive genetic variance for body weight, leg length, parasite burden, horn length, and testes size, but not for horn growth or our measure of annual fitness. However, random regression models found variation between individuals in their responses to the environment in only three traits, and did not support the presence of G*E for any trait. Our analyses of St Kilda Soay sheep data thus concurs with our cross-study review that, while natural environmental variation within a population can profoundly alter the strength of selection on phenotypic traits, there is less evidence for its effect on the expression of genetic variance in the wild.


Asunto(s)
Animales Salvajes , Interacción Gen-Ambiente , Estudios de Asociación Genética , Aptitud Genética , Genotipo , Mamíferos/genética , Fenotipo , Selección Genética , Algoritmos , Animales , Linaje , Carácter Cuantitativo Heredable , Ovinos
15.
Genetics ; 203(1): 583-98, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27029733

RESUMEN

Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h(2) = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3 A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals.


Asunto(s)
Secuencia Conservada , Polimorfismo de Nucleótido Simple , Recombinación Genética , Ovinos/genética , Animales , Animales Salvajes/genética , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Haplotipos , Masculino
16.
Exp Gerontol ; 71: 56-68, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26277618

RESUMEN

The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis within evolutionary biology that fitness-related traits should senesce in a synchronous manner is seriously flawed.


Asunto(s)
Envejecimiento/fisiología , Oveja Doméstica/fisiología , Animales , Animales Salvajes/fisiología , Biometría , Heces/parasitología , Femenino , Fertilidad/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Masculino , Recuento de Huevos de Parásitos , Fenotipo , Reproducción/fisiología , Conducta Sexual Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA