Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30377227

RESUMEN

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Eminencia Media/fisiología , Animales , Factor de Unión a CCCTC/genética , Recuento de Células , Movimiento Celular/genética , Movimiento Celular/fisiología , Corteza Cerebral/citología , Femenino , Proteínas con Homeodominio LIM/biosíntesis , Proteínas con Homeodominio LIM/genética , Masculino , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/fisiología
2.
Hippocampus ; 30(6): 565-581, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31713968

RESUMEN

α-Thalassemia X-linked intellectual disability (ATR-X) syndrome is a neurodevelopmental disorder caused by mutations in the ATRX gene that encodes a SNF2-type chromatin-remodeling protein. The ATRX protein regulates chromatin structure and gene expression in the developing mouse brain and early inactivation leads to DNA replication stress, extensive cell death, and microcephaly. However, the outcome of Atrx loss of function postnatally in neurons is less well understood. We recently reported that conditional inactivation of Atrx in postnatal forebrain excitatory neurons (ATRX-cKO) causes deficits in long-term hippocampus-dependent spatial memory. Thus, we hypothesized that ATRX-cKO mice will display impaired hippocampal synaptic transmission and plasticity. In the present study, evoked field potentials and current source density analysis were recorded from a multichannel electrode in male, urethane-anesthetized mice. Three major excitatory synapses, the Schaffer collaterals to basal dendrites and proximal apical dendrites, and the temporoammonic path to distal apical dendrites on hippocampal CA1 pyramidal cells were assessed by their baseline synaptic transmission, including paired-pulse facilitation (PPF) at 50-ms interpulse interval, and by their long-term potentiation (LTP) induced by theta-frequency burst stimulation. Baseline single-pulse excitatory response at each synapse did not differ between ATRX-cKO and control mice, but baseline PPF was reduced at the CA1 basal dendritic synapse in ATRX-cKO mice. While basal dendritic LTP of the first-pulse excitatory response was not affected in ATRX-cKO mice, proximal and distal apical dendritic LTP were marginally and significantly reduced, respectively. These results suggest that ATRX is required in excitatory neurons of the forebrain to achieve normal hippocampal LTP and PPF at the CA1 apical and basal dendritic synapses, respectively. Such alterations in hippocampal synaptic transmission and plasticity could explain the long-term spatial memory deficits in ATRX-cKO mice and provide insight into the physiological mechanisms underlying intellectual disability in ATR-X syndrome patients.


Asunto(s)
Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Prosencéfalo/metabolismo , Sinapsis/metabolismo , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Prosencéfalo/citología , Proteína Nuclear Ligada al Cromosoma X/genética
3.
J Neurosci ; 37(45): 10773-10782, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118205

RESUMEN

Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.


Asunto(s)
Epigénesis Genética/genética , Discapacidad Intelectual/etiología , Discapacidad Intelectual/genética , Epigenómica , Humanos
4.
Genes Dev ; 24(13): 1351-63, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20551166

RESUMEN

Condensation and segregation of mitotic chromosomes is a critical process for cellular propagation, and, in mammals, mitotic errors can contribute to the pathogenesis of cancer. In this report, we demonstrate that the retinoblastoma protein (pRB), a well-known regulator of progression through the G1 phase of the cell cycle, plays a critical role in mitotic chromosome condensation that is independent of G1-to-S-phase regulation. Using gene targeted mutant mice, we studied this aspect of pRB function in isolation, and demonstrate that it is an essential part of pRB-mediated tumor suppression. Cancer-prone Trp53(-/-) mice succumb to more aggressive forms of cancer when pRB's ability to condense chromosomes is compromised. Furthermore, we demonstrate that defective mitotic chromosome structure caused by mutant pRB accelerates loss of heterozygosity, leading to earlier tumor formation in Trp53(+/-) mice. These data reveal a new mechanism of tumor suppression, facilitated by pRB, in which genome stability is maintained by proper condensation of mitotic chromosomes.


Asunto(s)
Cromatina/metabolismo , Mitosis/genética , Neoplasias/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular/genética , Línea Celular , Proliferación Celular , Cromatina/genética , Inestabilidad Cromosómica/genética , Segregación Cromosómica , Cultura , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Mutación/genética , Fenotipo , Proteína de Retinoblastoma/genética , Análisis de Supervivencia , Proteínas Supresoras de Tumor/genética
5.
Hum Mol Genet ; 24(7): 1824-35, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25452430

RESUMEN

ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.


Asunto(s)
ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Guanina/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Proteínas Nucleares/metabolismo , Transcripción Genética , Talasemia alfa/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , ADN Helicasas/genética , Metilación de ADN , G-Cuádruplex , Histonas/metabolismo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/embriología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ratones , Ratones Noqueados , Mutación , Proteínas Nucleares/genética , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteína Nuclear Ligada al Cromosoma X , Talasemia alfa/embriología , Talasemia alfa/genética
6.
Nucleic Acids Res ; 42(13): 8356-68, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24990380

RESUMEN

ATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We show that ATRX binds many imprinted domains individually but that transient co-localization between imprinted domains in the nuclei of neurons does not require ATRX. We demonstrate that MeCP2 is required for ATRX recruitment and that deficiency of either ATRX or MeCP2 causes decreased frequency of long-range chromatin interactions associated with altered nucleosome density at CTCF-binding sites and reduced CTCF occupancy. These findings indicate that MeCP2 and ATRX regulate gene expression at a subset of imprinted domains by maintaining a nucleosome configuration conducive to CTCF binding and to the maintenance of higher order chromatin structure.


Asunto(s)
Encéfalo/metabolismo , Cromatina/química , ADN Helicasas/fisiología , Impresión Genómica , Proteína 2 de Unión a Metil-CpG/fisiología , Proteínas Nucleares/fisiología , Nucleosomas/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Encéfalo/crecimiento & desarrollo , Factor de Unión a CCCTC , Proteínas de Unión al Calcio , Núcleo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Eliminación de Gen , Factor II del Crecimiento Similar a la Insulina/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , Proteína Nuclear Ligada al Cromosoma X
7.
J Neurosci ; 34(8): 2860-70, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553927

RESUMEN

An increasing number of proteins involved in genome organization have been implicated in neurodevelopmental disorders, highlighting the importance of chromatin architecture in the developing CNS. The CCCTC-binding factor (CTCF) is a zinc finger DNA binding protein involved in higher-order chromatin organization, and mutations in the human CTCF gene cause an intellectual disability syndrome associated with microcephaly. However, information on CTCF function in vivo in the developing brain is lacking. To address this gap, we conditionally inactivated the Ctcf gene at early stages of mouse brain development. Cre-mediated Ctcf deletion in the telencephalon and anterior retina at embryonic day 8.5 triggered upregulation of the p53 effector PUMA (p53 upregulated modulator of apoptosis), resulting in massive apoptosis and profound ablation of telencephalic structures. Inactivation of Ctcf several days later at E11 also resulted in PUMA upregulation and increased apoptotic cell death, and the Ctcf-null forebrain was hypocellular and disorganized at birth. Although deletion of both Ctcf and Puma in the embryonic brain efficiently rescued Ctcf-null progenitor cell apoptosis, it failed to improve neonatal hypocellularity due to decreased proliferative capacity of rescued apical and outer radial glia progenitor cells. This was exacerbated by an independent effect of CTCF loss that resulted in depletion of the progenitor pool due to premature neurogenesis earlier in development. Our findings demonstrate that CTCF activities are required for two distinct events in early cortex formation: first, to correctly regulate the balance between neuroprogenitor cell proliferation and differentiation, and second, for the survival of neuroprogenitor cells, providing new clues regarding the contributions of CTCF in microcephaly/intellectual disability syndrome pathologies.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células-Madre Neurales/fisiología , Proteínas Represoras/fisiología , Animales , Antimetabolitos , Apoptosis/genética , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Encéfalo/anomalías , Bromodesoxiuridina , Factor de Unión a CCCTC , Muerte Celular/fisiología , Inmunoprecipitación de Cromatina , Exones/genética , Femenino , Técnica del Anticuerpo Fluorescente , Genes p53/genética , Genes p53/fisiología , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Noqueados , Nestina/genética , Nestina/fisiología , Embarazo , Cultivo Primario de Células , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/citología , Retina/fisiología , Telencéfalo/citología , Telencéfalo/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
8.
Hum Mol Genet ; 22(24): 5015-25, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23892236

RESUMEN

ATR-X syndrome is a rare genetic disorder caused by mutations in the ATRX gene. Affected individuals are cognitively impaired and display a variety of developmental abnormalities, including skeletal deformities. To investigate the function of ATRX during skeletal development, we selectively deleted the gene in the developing forelimb mesenchyme of mice. The absence of ATRX in the limb mesenchyme resulted in shorter digits, or brachydactyly, a defect also observed in a subset of ATR-X patients. This phenotype persisted until adulthood, causing reduced grip strength and altered gait in mutant mice. Examination of the embryonic ATRX-null forelimbs revealed a significant increase in apoptotic cell death, which could explain the reduced digit length. In addition, staining for the DNA damage markers γ-histone 2A family member X (γ-H2AX) and 53BP1 demonstrated a significant increase in the number of cells with DNA damage in the embryonic ATRX-null forepaw. Strikingly, only one large bright DNA damage event was observed per nucleus in proliferating cells. These large γ-H2AX foci were located in close proximity to the nuclear lamina and remained largely unresolved after cell differentiation. In addition, ATRX-depleted forelimb mesenchymal cells did not exhibit hypersensitivity to DNA fork-stalling compounds, suggesting that the nature as well as the response to DNA damage incurred by loss of ATRX in the developing limb fundamentally differs from other tissues. Our data suggest that DNA damage-induced apoptosis is a novel cellular mechanism underlying brachydactyly that might be relevant to additional skeletal syndromes.


Asunto(s)
Braquidactilia/genética , ADN Helicasas/genética , Miembro Anterior/anomalías , Mesodermo/metabolismo , Proteínas Nucleares/genética , Animales , Braquidactilia/metabolismo , Muerte Celular/genética , Condrocitos/metabolismo , ADN Helicasas/deficiencia , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Miembro Anterior/embriología , Miembro Anterior/fisiopatología , Estudios de Asociación Genética , Histonas/genética , Histonas/metabolismo , Hidroxiurea/farmacología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Masculino , Mesodermo/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fenotipo , Proteína Nuclear Ligada al Cromosoma X
9.
J Neurodev Disord ; 15(1): 39, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957569

RESUMEN

BACKGROUND: ATRX is an ATP-dependent chromatin remodeling protein with essential roles in safeguarding genome integrity and modulating gene expression. Deficiencies in this protein cause ATR-X syndrome, a condition characterized by intellectual disability and an array of developmental abnormalities, including features of autism. Previous studies demonstrated that deleting ATRX in mouse forebrain excitatory neurons postnatally resulted in male-specific memory deficits, but no apparent autistic-like behaviours. METHODS: We generated mice with an earlier embryonic deletion of ATRX in forebrain excitatory neurons and characterized their behaviour using a series of memory and autistic-related paradigms. RESULTS: We found that mutant mice displayed a broader spectrum of impairments, including fear memory, decreased anxiety-like behaviour, hyperactivity, as well as self-injurious and repetitive grooming. Sex-specific alterations were also observed, including male-specific aggression, sensory gating impairments, and decreased social memory. CONCLUSIONS: Collectively, the findings indicate that early developmental abnormalities arising from ATRX deficiency in forebrain excitatory neurons contribute to the presentation of fear memory deficits as well as autistic-like behaviours.


Asunto(s)
Trastorno Autístico , Femenino , Ratones , Masculino , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Neuronas/fisiología , Trastornos de la Memoria/etiología , Cognición
10.
Nat Commun ; 14(1): 7090, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925436

RESUMEN

Myelin, an extension of the oligodendrocyte plasma membrane, wraps around axons to facilitate nerve conduction. Myelination is compromised in ATR-X intellectual disability syndrome patients, but the causes are unknown. We show that loss of ATRX leads to myelination deficits in male mice that are partially rectified upon systemic thyroxine administration. Targeted ATRX inactivation in either neurons or oligodendrocyte progenitor cells (OPCs) reveals OPC-intrinsic effects on myelination. OPCs lacking ATRX fail to differentiate along the oligodendrocyte lineage and acquire a more plastic state that favors astrocytic differentiation in vitro and in vivo. ATRX chromatin occupancy in OPCs greatly overlaps with that of the chromatin remodelers CHD7 and CHD8 as well as H3K27Ac, a mark of active enhancers. Overall, our data indicate that ATRX regulates the onset of myelination systemically via thyroxine, and by promoting OPC differentiation and suppressing astrogliogenesis. These functions of ATRX identified in mice could explain white matter pathogenesis observed in ATR-X syndrome patients.


Asunto(s)
Vaina de Mielina , Tiroxina , Proteína Nuclear Ligada al Cromosoma X , Animales , Humanos , Masculino , Ratones , Diferenciación Celular/fisiología , Cromatina/metabolismo , Vaina de Mielina/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Tiroxina/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Neuroglía
11.
J Neurosci Methods ; 369: 109480, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026308

RESUMEN

BACKGROUND: Isolation of cell types of interest from the brain for molecular applications presents several challenges, including cellular damage during tissue dissociation or enrichment procedures, and low cell number in the tissue in some cases. Techniques have been developed to enrich distinct cell populations using immunopanning or fluorescence activated cell/nuclei sorting. However, these techniques often involve fixation, immunolabeling and DNA staining steps, which could potentially influence downstream omics applications. NEW METHOD: Taking advantage of readily available genetically modified mice with fluorescent-tagged nuclei, we describe a technique for the purification of cell-type specific brain nuclei, optimized to decrease sample preparation time and to limit potential artefacts for downstream omics applications. We demonstrate the applicability of this approach for the purification of glial cell nuclei and show that the resulting cell-type specific nuclei obtained can be used effectively for omics applications, including ATAC-seq and RNA-seq. RESULTS: We demonstrate excellent enrichment of fluorescently-tagged glial nuclei, yielding high quality RNA and chromatin. We identify several critical steps during nuclei isolation that help limit nuclei rupture and clumping, including quick homogenization, dilution before filtration and loosening of the pellet before resuspension, thus improving yield. Sorting of fluorescent nuclei can be achieved without fixation, antibody labelling, or DAPI staining, reducing potential artifactual results in RNA-seq and ATAC-seq analyses. We show that reproducible glial cell type-specific profiles can be obtained in transcriptomic and chromatin accessibility assays using this rapid protocol. COMPARISON WITH EXISTING METHODS: Our method allows for rapid enrichment of glial nuclei populations from the mouse brain with minimal processing steps, while still providing high quality RNA and chromatin required for reliable omics analyses. CONCLUSIONS: We provide a reproducible method to obtain nucleic material from glial cells in the mouse brain with a quick and limited sample preparation.


Asunto(s)
Núcleo Celular , Cromatina , Animales , Encéfalo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ratones , RNA-Seq
12.
Hum Mol Genet ; 18(5): 966-77, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19088125

RESUMEN

ATRX is an SWI/SNF-like chromatin remodeling protein that is mutated in several X-linked mental retardation syndromes, including the ATR-X syndrome. In mice, Atrx expression is widespread and attempts to understand its function in brain development are hampered by the lethality associated with ubiquitous or forebrain-restricted ablation of this gene. One way to circumvent this problem is to study its function in a region of the brain that is dispensable for long-term survival of the organism. The retina is a well-characterized tractable model of CNS development and in our review of 202 ATR-X syndrome patients, we found ocular defects present in approximately 25% of the cases, suggesting that studying Atrx in this tissue will provide insight into function. We report that Atrx is expressed in the neuroprogenitor pool in embryonic retina and in all cell types of the mature retina with the exception of rod photoreceptors. Conditional inactivation of Atrx in the retina during embryogenesis ultimately results in a loss of only two types of neurons, amacrine and horizontal cells. We show that this defect does not arise from a failure to specify these cells but rather a defect in interneuron differentiation and survival post-natally. The timing of cell loss is concomitant with light-dependent changes in synaptic organization in the retina and with a change in Atrx subnuclear localization within these interneurons. Moreover, these interneuron defects are associated with functional deficits as demonstrated by reduced b-wave amplitudes upon electroretinogram analysis. These results implicate a role for Atrx in interneuron survival and differentiation.


Asunto(s)
ADN Helicasas/metabolismo , Interneuronas/fisiología , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Proteínas Nucleares/metabolismo , Visión Ocular , Adulto , Células Amacrinas/fisiología , Animales , Supervivencia Celular , ADN Helicasas/genética , Femenino , Expresión Génica , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/embriología , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteína Nuclear Ligada al Cromosoma X
13.
Biochem Cell Biol ; 89(5): 435-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21851155

RESUMEN

The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Enfermedades del Sistema Nervioso/genética , Proteínas Nucleares/metabolismo , Animales , Cromatina/química , ADN Helicasas/genética , Femenino , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ratones , Proteínas Nucleares/genética , Síndrome de Rett/genética , Proteína Nuclear Ligada al Cromosoma X , Talasemia alfa/genética
14.
J Neurodev Disord ; 12(1): 17, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580781

RESUMEN

BACKGROUND: Alpha-thalassemia/mental retardation, X-linked, or ATRX, is an autism susceptibility gene that encodes a chromatin remodeler. Mutations of ATRX result in the ATR-X intellectual disability syndrome and have been identified in autism spectrum disorder (ASD) patients. The mechanisms by which ATRX mutations lead to autism and autistic-like behaviours are not yet known. To address this question, we generated mice with postnatal Atrx inactivation in excitatory neurons of the forebrain and performed a battery of behavioural assays that assess autistic-like behaviours. METHODS: Male and female mice with a postnatal conditional ablation of ATRX were generated using the Cre/lox system under the control of the αCaMKII gene promoter. These mice were tested in a battery of behavioural tests that assess autistic-like features. We utilized paradigms that measure social behaviour, repetitive, and stereotyped behaviours, as well as sensory gating. Statistics were calculated by two-way repeated measures ANOVA with Sidak's multiple comparison test or unpaired Student's t tests as indicated. RESULTS: The behaviour tests revealed no significant differences between Atrx-cKO and control mice. We identified sexually dimorphic changes in odor habituation and discrimination; however, these changes did not correlate with social deficits. CONCLUSION: The postnatal knockout of Atrx in forebrain excitatory neurons does not lead to autism-related behaviours in male or female mice.


Asunto(s)
Trastorno Autístico/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Talasemia alfa/genética , Animales , Ensamble y Desensamble de Cromatina , Femenino , Masculino , Ratones , Ratones Noqueados , Mutación , Neuronas/metabolismo , Periodo Posparto , Proteína Nuclear Ligada al Cromosoma X
15.
Cell Death Dis ; 11(5): 311, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366868

RESUMEN

Cell fusion occurs when several cells combine to form a multinuclear aggregate (syncytium). In human placenta, a syncytialized trophoblast (syncytiotrophoblast) layer forms the primary interface between maternal and fetal tissue, facilitates nutrient and gas exchange, and produces hormones vital for pregnancy. Syncytiotrophoblast development occurs by differentiation of underlying progenitor cells called cytotrophoblasts, which then fuse into the syncytiotrophoblast layer. Differentiation is associated with chromatin remodeling and specific changes in gene expression mediated, at least in part, by histone acetylation. However, the epigenetic regulation of human cytotrophoblast differentiation and fusion is poorly understood. In this study, we found that human syncytiotrophoblast development was associated with deacetylation of multiple core histone residues. Chromatin immunoprecipitation sequencing revealed chromosomal regions that exhibit dynamic alterations in histone H3 acetylation during differentiation. These include regions containing genes classically associated with cytotrophoblast differentiation (TEAD4, TP63, OVOL1, CGB), as well as near genes with novel regulatory roles in trophoblast development and function, such as LHX4 and SYDE1. Prevention of histone deacetylation using both pharmacological and genetic approaches inhibited trophoblast fusion, supporting a critical role of this process for trophoblast differentiation. Finally, we identified the histone deacetylases (HDACs) HDAC1 and HDAC2 as the critical mediators driving cytotrophoblast differentiation. Collectively, these findings provide novel insights into the epigenetic mechanisms underlying trophoblast fusion during human placental development.


Asunto(s)
Diferenciación Celular , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Placenta/citología , Células Madre/citología , Trofoblastos/citología , Trofoblastos/enzimología , Acetilación/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Genoma Humano , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Embarazo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Trofoblastos/efectos de los fármacos
16.
Cell Rep ; 31(13): 107838, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610139

RESUMEN

ATRX gene mutations have been identified in syndromic and non-syndromic intellectual disabilities in humans. ATRX is known to maintain genomic stability in neuroprogenitor cells, but its function in differentiated neurons and memory processes remains largely unresolved. Here, we show that the deletion of neuronal Atrx in mice leads to distinct hippocampal structural defects, fewer presynaptic vesicles, and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. We identify male-specific impairments in long-term contextual memory and in synaptic gene expression, linked to altered miR-137 levels. We show that ATRX directly binds to the miR-137 locus and that the enrichment of the suppressive histone mark H3K27me3 is significantly reduced upon the loss of ATRX. We conclude that the ablation of ATRX in excitatory forebrain neurons leads to sexually dimorphic effects on miR-137 expression and on spatial memory, identifying a potential therapeutic target for neurological defects caused by ATRX dysfunction.


Asunto(s)
Eliminación de Gen , Regulación de la Expresión Génica , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , MicroARNs/genética , Caracteres Sexuales , Aprendizaje Espacial , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Animales , Secuencia de Bases , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Condicionamiento Operante , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Genotipo , Histonas/metabolismo , Lisina/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Neuronas , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteína Nuclear Ligada al Cromosoma X/metabolismo
17.
J Neurosci ; 28(47): 12570-80, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19020049

RESUMEN

ATRX, a chromatin remodeling protein of the Snf2 family, participates in diverse cellular functions including regulation of gene expression and chromosome alignment during mitosis and meiosis. Mutations in the human gene cause alpha thalassemia mental retardation, X-linked (ATR-X) syndrome, a rare disorder characterized by severe cognitive deficits, microcephaly and epileptic seizures. Conditional inactivation of the Atrx gene in the mouse forebrain leads to neonatal lethality and defective neurogenesis manifested by increased cell death and reduced cellularity in the developing neocortex and hippocampus. Here, we show that Atrx-null forebrains do not generate dentate granule cells due to a reduction in precursor cell number and abnormal migration of differentiating granule cells. In addition, fewer GABA-producing interneurons are generated that migrate from the ventral telencephalon to the cortex and hippocampus. Staining for cleaved caspase 3 demonstrated increased apoptosis in both the hippocampal hem and basal telencephalon concurrent with p53 pathway activation. Elimination of the tumor suppressor protein p53 in double knock-out mice rescued cell death in the embryonic telencephalon but only partially ameliorated the Atrx-null phenotypes at birth. Together, these findings show that ATRX deficiency leads to p53-dependent neuronal apoptosis which is responsible for some but not all of the phenotypic consequences of ATRX deficiency in the forebrain.


Asunto(s)
ADN Helicasas/metabolismo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Prosencéfalo/citología , Proteína p53 Supresora de Tumor/fisiología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , ADN Helicasas/deficiencia , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/embriología , Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Neuronas/efectos de los fármacos , Proteínas Nucleares/deficiencia , Embarazo , Transducción de Señal/genética , Células Madre/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Nuclear Ligada al Cromosoma X , Ácido gamma-Aminobutírico/metabolismo
18.
Mol Cell Biol ; 26(9): 3659-71, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16612004

RESUMEN

The retinoblastoma protein (pRb) has been proposed to regulate cell cycle progression in part through its ability to interact with enzymes that modify histone tails and create a repressed chromatin structure. We created a mutation in the murine Rb1 gene that disrupted pRb's ability to interact with these enzymes to determine if it affected cell cycle control. Here, we show that loss of this interaction slows progression through mitosis and causes aneuploidy. Our experiments reveal that while the LXCXE binding site mutation does not disrupt pRb's interaction with the Suv4-20h histone methyltransferases, it dramatically reduces H4-K20 trimethylation in pericentric heterochromatin. Disruption of heterochromatin structure in this chromosomal region leads to centromere fusions, chromosome missegregation, and genomic instability. These results demonstrate the surprising finding that pRb uses the LXCXE binding cleft to control chromatin structure for the regulation of events beyond the G(1)-to-S-phase transition.


Asunto(s)
Aneuploidia , Centrómero/metabolismo , Heterocromatina/metabolismo , Mitosis/genética , Proteína de Retinoblastoma/fisiología , Animales , Sitios de Unión/genética , Ciclo Celular/genética , Células Cultivadas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Ratones Mutantes , Mutación , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
19.
Birth Defects Res C Embryo Today ; 84(2): 123-30, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18546336

RESUMEN

Coordinated transition from proliferation to terminal differentiation and hypertrophy of growth plate chondrocytes is required for normal growth of endochondral bones and thus determines final height in humans. Over the last decades, transcription factors of the Sox and Runx families have been shown to be the central regulators of this process. More recently, numerous additional transcription factors have been identified as positive or negative regulators of chondrocyte hypertrophy, such as Shox/Shox2, Dlx5, and MEF2C. These factors do not only control skeletal development and growth, but might also participate in ectopic chondrocyte hypertrophy during the pathogenesis of osteoarthritis. This review focuses on recent advances in our understanding of the transcriptional regulation of chondrocyte hypertrophy, with particular attention to genes that have only recently been implicated in cartilage development or received little attention so far.


Asunto(s)
Desarrollo Óseo/fisiología , Enfermedades Óseas/genética , Condrocitos/citología , Condrocitos/patología , Regulación de la Expresión Génica , Hipertrofia/patología , Transcripción Genética , Animales , Enfermedades Óseas/embriología , Enfermedades Óseas/patología , Cartílago/citología , Cartílago/patología , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Genoma , Proteínas de Homeodominio/genética , Humanos , Proteínas de Dominio MADS/genética , Factores de Transcripción MEF2 , Ratones , Factores Reguladores Miogénicos/genética
20.
BMC Genomics ; 9: 468, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18842153

RESUMEN

BACKGROUND: Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. RESULTS: We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherian ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. CONCLUSION: We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , Genoma , Proteínas Nucleares/genética , Translocación Genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Evolución Molecular , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Prosencéfalo/crecimiento & desarrollo , ARN/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Proteína Nuclear Ligada al Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA