Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 146(22)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31666236

RESUMEN

The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed Arabidopsis thaliana embryos, cell number was not affected either in single or double mutants for the activator-type E2FA and E2FB Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes LEAFY COTYLEDON 1/2 (LEC1/2), ABSCISIC ACID INSENSITIVE 3, FUSCA 3 and WRINKLED 1 is upregulated in the e2fab double mutant embryo. In accordance, E2FA directly regulates LEC2, and mutation at the consensus E2F-binding site in the LEC2 promoter de-represses its activity during the proliferative stage of seed development. In addition, the major seed storage reserve proteins, 12S globulin and 2S albumin, became prematurely accumulated at the proliferating phase of seed development in the e2fab double mutant. Our findings reveal a repressor function of the activator E2Fs to restrict the seed maturation programme until the cell proliferation phase is completed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción E2F/metabolismo , Semillas/crecimiento & desarrollo , Albúminas/metabolismo , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
2.
EMBO J ; 36(9): 1261-1278, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28320736

RESUMEN

The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN de Plantas/metabolismo
3.
Plant Physiol ; 182(2): 919-932, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818906

RESUMEN

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Cromatografía de Afinidad , Espectrometría de Masas , Meristema/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 182(1): 518-533, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31694902

RESUMEN

Cell cycle entry and quiescence are regulated by the E2F transcription factors in association with RETINOBLASTOMA-RELATED (RBR). E2FB is considered to be a transcriptional activator of cell cycle genes, but its function during development remains poorly understood. Here, by studying E2FB-RBR interaction, E2F target gene expression, and epidermal cell number and shape in e2fb mutant and overexpression lines during leaf development in Arabidopsis (Arabidopsis thaliana), we show that E2FB in association with RBR plays a role in the inhibition of cell proliferation to establish quiescence. In young leaves, both RBR and E2FB are abundant and form a repressor complex that is reinforced by an autoregulatory loop. Increased E2FB levels, either by expression driven by its own promoter or ectopically together with DIMERIZATION PARTNER A, further elevate the amount of this repressor complex, leading to reduced leaf cell number. Cell overproliferation in e2fb mutants and in plants overexpressing a truncated form of E2FB lacking the RBR binding domain strongly suggested that RBR repression specifically acts through E2FB. The increased number of small cells below the guard cells and of fully developed stomata indicated that meristemoids preferentially hyperproliferate. As leaf development progresses and cells differentiate, the amount of RBR and E2FB gradually declined. At this stage, elevation of E2FB level can overcome RBR repression, leading to reactivation of cell division in pavement cells. In summary, E2FB in association with RBR is central to regulating cell proliferation during organ development to determine final leaf cell number.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética
5.
J Exp Bot ; 71(4): 1265-1277, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693141

RESUMEN

γ-Tubulin is associated with microtubule nucleation, but evidence is accumulating in eukaryotes that it also functions in nuclear processes and in cell division control independently of its canonical role. We found that in Arabidopsis thaliana, γ-tubulin interacts specifically with E2FA, E2FB, and E2FC transcription factors both in vitro and in vivo. The interaction of γ-tubulin with the E2Fs is not reduced in the presence of their dimerization partners (DPs) and, in agreement, we found that γ-tubulin interaction with E2Fs does not require the dimerization domain. γ-Tubulin associates with the promoters of E2F-regulated cell cycle genes in an E2F-dependent manner, probably in complex with the E2F-DP heterodimer. The up-regulation of E2F target genes PCNA, ORC2, CDKB1;1, and CCS52A under γ-tubulin silencing suggests a repressive function for γ-tubulin at G1/S and G2/M transitions, and the endocycle, which is consistent with an excess of cell division in some cells and enhanced endoreduplication in others in the shoot and young leaves of γ-tubulin RNAi plants. Altogether, our data show ternary interaction of γ-tubulin with the E2F-DP heterodimer and suggest a repressive role for γ-tubulin with E2Fs in controlling mitotic activity and endoreduplication during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción E2F , Tubulina (Proteína) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Tubulina (Proteína)/genética
6.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26069325

RESUMEN

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Asunto(s)
Arabidopsis/fisiología , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas , Análisis por Micromatrices , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
7.
Plant Physiol ; 176(2): 1365-1381, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29284741

RESUMEN

The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions.


Asunto(s)
Arabidopsis/fisiología , Meristema/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proliferación Celular , Citocininas/metabolismo , Oscuridad , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Luz , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Vegetales/fisiología , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/fisiología , Plantones/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Exp Bot ; 70(8): 2275-2284, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30918972

RESUMEN

Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.


Asunto(s)
Puntos de Control del Ciclo Celular , Factores de Transcripción E2F/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ciclo Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Meristema/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
9.
Plant J ; 82(5): 772-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847219

RESUMEN

The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aclimatación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Presión Osmótica , Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
EMBO J ; 31(6): 1480-93, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22307083

RESUMEN

Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Cromatina/genética , Cromatina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Sacarosa/metabolismo
11.
Biochem J ; 467(1): 167-75, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25646663

RESUMEN

Mitogen-activated protein kinases (MAPKs) are part of conserved signal transduction modules in eukaryotes that are typically organized into three-tiered kinase cascades. The activation of MAPKs in these pathways is fully dependent on the bisphosphorylation of the TXY motif in the T-loop by the pertinent dual-specificity MAPK kinases (MAPKKs). The Arabidopsis mitogen-activated protein kinase 9 (AtMPK9) is a member of an atypical class of MAPKs. Representatives of this MAPK family have a TDY phosphoacceptor site, a long C-terminal extension and lack the common MAPKK-binding docking motif. In the present paper, we describe multiple in vitro and in vivo data showing that AtMPK9 is activated independently of any upstream MAPKKs but rather is activated through autophosphorylation. We mapped the autophosphorylation sites by MS to the TDY motif and to the C-terminal regulatory extension. We mutated the phosphoacceptor sites on the TDY, which confirmed the requirement for bisphorylation at this site for full kinase activity. Next, we demonstrated that the kinase-inactive mutant form of AtMPK9 is not trans-phosphorylated on the TDY site when mixed with an active AtMPK9, implying that the mechanism of the autocatalytic phosphorylation is intramolecular. Furthermore, we show that in vivo AtMPK9 is activated by salt and is regulated by okadaic acid-sensitive phosphatases. We conclude that the plant AtMPK9 shows similarities to the mammalian atypical MAPKs, such as extracellular-signal-regulated kinase (ERK) 7/8, in terms of an MAPKK-independent activation mechanism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Treonina/química , Tirosina/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálisis , Células Cultivadas , Activación Enzimática , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
New Phytol ; 207(4): 1061-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061286

RESUMEN

Stress-activated plant mitogen-activated protein (MAP) kinase pathways play roles in growth adaptation to the environment by modulating cell division through cytoskeletal regulation, but the mechanisms are poorly understood. We performed protein interaction and phosphorylation experiments with cytoskeletal proteins, mass spectrometric identification of MPK6 complexes and immunofluorescence analyses of the microtubular cytoskeleton of mitotic cells using wild-type, mpk6-2 mutant and plants overexpressing the MAP kinase-inactivating phosphatase, AP2C3. We showed that MPK6 interacted with γ-tubulin and co-sedimented with plant microtubules polymerized in vitro. It was the active form of MAP kinase that was enriched with microtubules and followed similar dynamics to γ-tubulin, moving from poles to midzone during the anaphase-to-telophase transition. We found a novel substrate for MPK6, the microtubule plus end protein, EB1c. The mpk6-2 mutant was sensitive to 3-nitro-l-tyrosine (NO2 -Tyr) treatment with respect to mitotic abnormalities, and root cells overexpressing AP2C3 showed defects in chromosome segregation and spindle orientation. Our data suggest that the active form of MAP kinase interacts with γ-tubulin on specific subsets of mitotic microtubules during late mitosis. MPK6 phosphorylates EB1c, but not EB1a, and has a role in maintaining regular planes of cell division under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Huso Acromático/metabolismo , Estrés Fisiológico , Tubulina (Proteína)/metabolismo , Anafase/efectos de los fármacos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Butadienos/farmacología , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Citocinesis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Meristema/citología , Meristema/efectos de los fármacos , Meristema/metabolismo , Microtúbulos/efectos de los fármacos , Nitrilos/farmacología , Nitrosación/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Huso Acromático/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Telofase/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/farmacología
13.
Plant Physiol ; 165(1): 319-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24676858

RESUMEN

Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , ADN Bacteriano/genética , Estradiol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Transformación Genética/efectos de los fármacos
14.
EMBO J ; 29(17): 2979-93, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20683442

RESUMEN

The 40S ribosomal protein S6 kinase (S6K) is a conserved component of signalling pathways controlling growth in eukaryotes. To study S6K function in plants, we isolated single- and double-knockout mutations and RNA-interference (RNAi)-silencing lines in the linked Arabidopsis S6K1 and S6K2 genes. Hemizygous s6k1s6k2/++ mutant and S6K1 RNAi lines show high phenotypic instability with variation in size, increased trichome branching, produce non-viable pollen and high levels of aborted seeds. Analysis of their DNA content by flow cytometry, as well as chromosome counting using DAPI staining and fluorescence in situ hybridization, revealed an increase in ploidy and aneuploidy. In agreement with this data, we found that S6K1 associates with the Retinoblastoma-related 1 (RBR1)-E2FB complex and this is partly mediated by its N-terminal LVxCxE motif. Moreover, the S6K1-RBR1 association regulates RBR1 nuclear localization, as well as E2F-dependent expression of cell cycle genes. Arabidopsis cells grown under nutrient-limiting conditions require S6K for repression of cell proliferation. The data suggest a new function for plant S6K as a repressor of cell proliferation and required for maintenance of chromosome stability and ploidy levels.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Inestabilidad Cromosómica , Factores de Transcripción E2F/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Arabidopsis/química , Arabidopsis/genética , ADN de Plantas/análisis , Citometría de Flujo , Colorantes Fluorescentes/farmacología , Técnicas de Inactivación de Genes , Hibridación Fluorescente in Situ , Indoles/farmacología , Ploidias , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Coloración y Etiquetado
15.
J Exp Bot ; 65(10): 2691-701, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24567496

RESUMEN

One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Desarrollo de la Planta , Transducción de Señal , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Carbono/metabolismo , Tamaño de la Célula
16.
Plant Cell ; 23(10): 3671-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22003076

RESUMEN

Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Ciclo Celular/fisiología , Factores de Transcripción E2F/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Raíces de Plantas/citología , Raíces de Plantas/genética , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
17.
New Phytol ; 198(3): 685-698, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23437871

RESUMEN

Nitrilases are highly conserved proteins with catabolic activity but much less understood functions in cell division and apoptosis. To elucidate the biological functions of Arabidopsis NITRILASE1, we characterized its molecular forms, cellular localization and involvement in cell proliferation and plant development. We performed biochemical and mass spectrometry analyses of NITRILASE1 complexes, electron microscopy of nitrilase polymers, imaging of developmental and cellular distribution, silencing and overexpression of nitrilases to study their functions. We found that NITRILASE1 has an intrinsic ability to form filaments. GFP-NITRILASE1 was abundant in proliferating cells, distributed in cytoplasm, in the perinuclear area and associated with microtubules. As cells exited proliferation and entered differentiation, GFP-NITRILASE1 became predominantly nuclear. Nitrilase silencing dose-dependently compromised plant growth, led to loss of tissue organization and sustained proliferation. Cytokinesis was frequently aborted, leading to enlarged polyploid cells. In reverse, independently transformed cell lines overexpressing GFP-NITRILASE1 showed slow growth and increased rate of programmed cell death. Altogether, our data suggest that NITRILASE1 homologues regulate the exit from cell cycle and entry into differentiation and simultaneously are required for cytokinesis. These functions are essential to maintain normal ploidy, genome stability and tissue organization.


Asunto(s)
Aminohidrolasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Inestabilidad Genómica , Ácido Anhídrido Hidrolasas/genética , Aminohidrolasas/química , Aminohidrolasas/genética , Aminohidrolasas/ultraestructura , Arabidopsis/citología , Ciclo Celular/genética , Muerte Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Citoplasma/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Neoplasias/genética , Interferencia de ARN
18.
Commun Biol ; 6(1): 903, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666980

RESUMEN

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , División Celular , Ciclo Celular/genética , Desarrollo de la Planta
20.
Plant Physiol ; 157(3): 1440-51, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908689

RESUMEN

Endoreduplication represents a variation on the cell cycle in which multiple rounds of DNA replication occur without subsequent chromosome separation and cytokinesis, thereby increasing the cellular DNA content. It is known that the DNA ploidy level of cells is controlled by external stimuli such as light; however, limited knowledge is available on how environmental signals regulate the endoreduplication cycle at the molecular level. Previously, we had demonstrated that the conversion from a mitotic cell cycle into an endoreduplication cycle is controlled by the atypical E2F transcription factor, DP-E2F-LIKE1 (DEL1), that represses the endocycle onset. Here, the Arabidopsis (Arabidopsis thaliana) DEL1 gene was identified as a transcriptional target of the classical E2Fb and E2Fc transcription factors that antagonistically control its transcript levels through competition for a single E2F cis-acting binding site. In accordance with the reported opposite effects of light on the protein levels of E2Fb and E2Fc, DEL1 transcription depended on the light regime. Strikingly, modified DEL1 expression levels uncoupled the link between light and endoreduplication in hypocotyls, implying that DEL1 acts as a regulatory connection between endocycle control and the photomorphogenic response.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Factores de Transcripción E2F/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Factores de Transcripción E2F/metabolismo , Hipocótilo/genética , Hipocótilo/efectos de la radiación , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Plantas Modificadas Genéticamente , Ploidias , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de la radiación , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA