Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(2): 249-259.e25, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28669536

RESUMEN

Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is ∼100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. PAPERCLIP.


Asunto(s)
Antituberculosos/farmacología , Benzofuranos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/farmacología , Tuberculosis/microbiología , Animales , Antituberculosos/química , Benzofuranos/química , Benzofuranos/farmacocinética , Línea Celular , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Piperidinas/química , Piperidinas/farmacocinética , Organismos Libres de Patógenos Específicos
2.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Cell Mol Life Sci ; 80(12): 378, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010524

RESUMEN

A common perception in age-related neurodegenerative diseases posits that a decline in proteostasis is key to the accumulation of neuropathogenic proteins, such as amyloid beta (Aß), and the development of sporadic Alzheimer's disease (AD). To experimentally challenge the role of protein homeostasis in the accumulation of Alzheimer's associated protein Aß and levels of associated Tau phosphorylation, we disturbed proteostasis in single APP knock-in mouse models of AD building upon Rps9 D95N, a recently identified mammalian ram mutation which confers heightened levels of error-prone translation together with an increased propensity for random protein aggregation and which is associated with accelerated aging. We crossed the Rps9 D95N mutation into knock-in mice expressing humanized Aß with different combinations of pathogenic mutations (wild-type, NL, NL-F, NL-G-F) causing a stepwise and quantifiable allele-dependent increase in the development of Aß accumulation, levels of phosphorylated Tau, and neuropathology. Surprisingly, the misfolding-prone environment of the Rps9 D95N ram mutation did not affect Aß accumulation and plaque formation, nor the level of phosphorylated Tau in any of the humanized APP knock-in lines. Our findings indicate that a misfolding-prone environment induced by error-prone translation with its inherent perturbations in protein homeostasis has little impact on the accumulation of pathogenic Aß, plaque formation and associated phosphorylated Tau.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Masculino , Ratones , Animales , Ovinos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteostasis , Ratones Transgénicos , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo
4.
Antimicrob Agents Chemother ; 66(2): e0151021, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930031

RESUMEN

Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Nebramicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico
5.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457201

RESUMEN

We have recently identified point mutation V336Y in mitoribosomal protein Mrps5 (uS5m) as a mitoribosomal ram (ribosomal ambiguity) mutation conferring error-prone mitochondrial protein synthesis. In vivo in transgenic knock-in animals, homologous mutation V338Y was associated with a discrete phenotype including impaired mitochondrial function, anxiety-related behavioral alterations, enhanced susceptibility to noise-induced hearing damage, and accelerated metabolic aging in muscle. To challenge the postulated link between Mrps5 V338Y-mediated misreading and the in vivo phenotype, we introduced mutation G315R into the mouse Mrps5 gene as Mrps5 G315R is homologous to the established bacterial ram mutation RpsE (uS5) G104R. However, in contrast to bacterial translation, the homologous G → R mutation in mitoribosomal Mrps5 did not affect the accuracy of mitochondrial protein synthesis. Importantly, in the absence of mitochondrial misreading, homozygous mutant MrpS5G315R/G315R mice did not show a phenotype distinct from wild-type animals.


Asunto(s)
Proteínas Mitocondriales , Proteínas Ribosómicas , Animales , Ratones , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Filogenia , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética
6.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803109

RESUMEN

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Mutación Missense , Biosíntesis de Proteínas , Proteínas Ribosómicas/biosíntesis , Adenosina Trifosfato/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Encéfalo/patología , Ciclo del Ácido Cítrico/genética , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética
7.
Clin Infect Dis ; 71(4): 905-913, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32797222

RESUMEN

Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium kansasii , Adulto , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Complejo Mycobacterium avium , Micobacterias no Tuberculosas
8.
Clin Infect Dis ; 71(4): e1-e36, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32628747

RESUMEN

Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium kansasii , Adulto , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Complejo Mycobacterium avium , Micobacterias no Tuberculosas
9.
J Am Chem Soc ; 142(16): 7306-7311, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32285674

RESUMEN

A stereoselective synthesis of the ribosome-binding antitumor antibiotic (-)-bactobolin A is reported. The presented approach makes effective use of (-)-quinic acid as a chiral pool starting material and substrate stereocontrol to establish the five contiguous stereocenters of (-)-bactobolin A. The key steps of the synthesis include a stereoselective vinylogous aldol reaction to introduce the unusual dichloromethyl substituent, a completely diastereoselective rhodium(II)-catalyzed C-H amination reaction to set the configuration of the axial amine, and an intramolecular alkoxycarbonylation to build the bicyclic lactone framework. The developed synthetic route was used to prepare 90 mg of (-)-bactobolin A trifluoroacetate in 10% overall yield.


Asunto(s)
Benzopiranos/síntesis química , Catálisis , Estereoisomerismo
10.
J Am Chem Soc ; 142(1): 530-544, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31790244

RESUMEN

Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-ß-d-ribofuranosides, 5-O-ß-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.


Asunto(s)
Aminoaciltransferasas/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Glicósidos/química , Nebramicina/análogos & derivados , Antibacterianos/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Éteres/química , Pruebas de Sensibilidad Microbiana , Nebramicina/química , Nebramicina/farmacología
11.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32868333

RESUMEN

Mutations in the genes of the F420 signaling pathway of Mycobacterium tuberculosis complex, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, can lead to delamanid resistance. We searched for such mutations among 129 M. tuberculosis strains from Asia, South America, and Africa using whole-genome sequencing; 70 (54%) strains had at least one mutation in one of the genes. For 10 strains with mutations, we determined the MIC of delamanid. We found one strain from a delamanid-naive patient carrying the natural polymorphism Tyr29del (ddn) that was associated with a critical delamanid MIC.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis Resistente a Múltiples Medicamentos , África , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Asia , Humanos , Pruebas de Sensibilidad Microbiana , Mutación/genética , Mycobacterium tuberculosis/genética , Nitroimidazoles , Oxazoles , América del Sur , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
12.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32718966

RESUMEN

We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis isolates collected from HIV-coinfected and HIV-negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant M. tuberculosis strains isolated from HIV-coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low-fitness rpoB variants can thrive in the context of reduced host immunity.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Rifampin
13.
Eur Respir J ; 56(1)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636299

RESUMEN

Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium kansasii , Adulto , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Complejo Mycobacterium avium , Micobacterias no Tuberculosas
14.
J Antimicrob Chemother ; 75(11): 3218-3229, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766760

RESUMEN

BACKGROUND: Rapid antimicrobial susceptibility testing (RAST) of bacteria causing bloodstream infections is critical for implementation of appropriate antibiotic regimens. OBJECTIVES: We have established a procedure to prepare standardized bacterial inocula for Enterobacterales-containing clinical blood cultures and assessed antimicrobial susceptibility testing (AST) data generated with the WASPLabTM automated reading system. METHODS: A total of 258 blood cultures containing Enterobacterales were examined. Bacteria were enumerated by flow cytometry using the UF-4000 system and adjusted to an inoculum of 106 cfu/mL. Disc diffusion plates were automatically streaked, incubated for 6, 8 and 18 h and imaged using the fully automated WASPLabTM system. Growth inhibition zones were compared with those obtained with inocula prepared from primary subcultures following the EUCAST standard method. Due to time-dependent variations of the inhibition zone diameters, early AST readings were interpreted using time-adjusted tentative breakpoints and areas of technical uncertainty. RESULTS AND CONCLUSIONS: Inhibition zones obtained after 18 h incubation using an inoculum of 106 cfu/mL prepared directly from blood cultures were highly concordant with those of the EUCAST standard method based on primary subcultures, with categorical agreement (CA) of 95.8%. After 6 and 8 h incubation, 89.5% and 93.0% of the isolates produced interpretable results, respectively, with CA of >98.5% and very low numbers of clinical categorization errors for both the 6 h and 8 h readings. Overall, with the standardized and automated RAST method, consistent AST data from blood cultures containing Enterobacterales can be generated after 6-8 h of incubation and subsequently confirmed by standard reading of the same plate after 18 h.


Asunto(s)
Antibacterianos , Cultivo de Sangre , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
15.
J Antimicrob Chemother ; 75(6): 1495-1505, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32155259

RESUMEN

BACKGROUND: Disc diffusion is a reliable, accurate and cost-efficient procedure for antimicrobial susceptibility testing (AST) but requires long (18-24 h) incubation times. Reading of disc diffusion after short incubation times (6-8 h) by automated systems is feasible but should be categorized with time-adapted breakpoints to reduce errors. OBJECTIVES: This study systematically compared early readings (6 and 8 h) of disc diffusion using an automated system with that of the standard 18 h EUCAST method. Time-adapted tentative breakpoints were proposed to discriminate susceptible from resistant isolates and areas of technical uncertainty were defined to minimize the risk of errors. METHODS: A total of 1106 Enterobacterales isolates with a wide variety of resistance mechanisms and resistance profiles were included. All isolates were analysed for susceptibility to amoxicillin/clavulanic acid, ceftriaxone, cefepime, meropenem, ciprofloxacin and gentamicin using the automated WASPLabTM system. Part of the collection (515 isolates) was also analysed for susceptibility to an additional 10 antibiotics. RESULTS: Separation between WT and non-WT populations was poorer at early incubation times than following standard incubation. Editing of rapid automated AST results after 6 and 8 h incubation with time-adapted breakpoints resulted in 84.0% and 88.5% interpretable results with assignment to the resistant or susceptible category. Major error and very major error rates for the 6 h readings were only 0.4% and 0.3%, virtually identical to those of 18 h AST reading. CONCLUSIONS: Time-adapted clinical breakpoints in disc diffusion testing for Enterobacterales allow for accurate automated AST interpretation after shortened incubation times for a large number of antibiotics, with the additional possibility of subsequent confirmation after 18 h incubation.


Asunto(s)
Antibacterianos , Ciprofloxacina , Antibacterianos/farmacología , Gentamicinas , Pruebas de Sensibilidad Microbiana , Incertidumbre
16.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30237157

RESUMEN

The 1555 A to G substitution in mitochondrial 12S A-site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G-mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read-through of mtDNA-encoded MT-CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knock-in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noise-induced hearing damage and anxiety-related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stress-related behavioral and physiological adaptations.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Envejecimiento/genética , Animales , Conducta Animal , Encéfalo/citología , Cisteína/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/genética , Células HEK293 , Trastornos de la Audición/genética , Humanos , Metionina/metabolismo , Ratones Transgénicos , Mitocondrias/genética , Ruido/efectos adversos , Biosíntesis de Proteínas , ARN Mensajero , Ribosomas/genética , Ribosomas/metabolismo , Estrés Fisiológico/genética
17.
J Am Chem Soc ; 141(12): 5051-5061, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30793894

RESUMEN

Infectious diseases due to multidrug-resistant pathogens, particularly carbapenem-resistant Enterobacteriaceae (CREs), present a major and growing threat to human health and society, providing an urgent need for the development of improved potent antibiotics for their treatment. We describe the design and development of a new class of aminoglycoside antibiotics culminating in the discovery of propylamycin. Propylamycin is a 4'-deoxy-4'-alkyl paromomycin whose alkyl substituent conveys excellent activity against a broad spectrum of ESKAPE pathogens and other Gram-negative infections, including CREs, in the presence of numerous common resistance determinants, be they aminoglycoside modifying enzymes or rRNA methyl transferases. Importantly, propylamycin is demonstrated not to be susceptible to the action of the ArmA resistance determinant whose presence severely compromises the action of plazomicin and all other 4,6-disubstituted 2-deoxystreptamine aminoglycosides. The lack of susceptibility to ArmA, which is frequently encoded on the same plasmid as carbapenemase genes, ensures that propylamycin will not suffer from problems of cross-resistance when used in combination with carbapenems. Cell-free translation assays, quantitative ribosome footprinting, and X-ray crystallography support a model in which propylamycin functions by interference with bacterial protein synthesis. Cell-free translation assays with humanized bacterial ribosomes were used to optimize the selectivity of propylamycin, resulting in reduced ototoxicity in guinea pigs. In mouse thigh and septicemia models of Escherichia coli, propylamycin shows excellent efficacy, which is better than paromomycin. Overall, a simple novel deoxy alkyl modification of a readily available aminoglycoside antibiotic increases the inherent antibacterial activity, effectively combats multiple mechanisms of aminoglycoside resistance, and minimizes one of the major side effects of aminoglycoside therapy.


Asunto(s)
Aminoglicósidos/síntesis química , Aminoglicósidos/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Aminoglicósidos/química , Animales , Antibacterianos/química , Técnicas de Química Sintética , Cobayas , Hexosaminas/síntesis química , Hexosaminas/química , Hexosaminas/farmacología , Hexosaminas/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Relación Estructura-Actividad
18.
Artículo en Inglés | MEDLINE | ID: mdl-30718257

RESUMEN

Whole-genome sequencing allows rapid detection of drug-resistant Mycobacterium tuberculosis isolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis isolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/genética , Antituberculosos/farmacología , República Democrática del Congo , Etambutol/farmacología , Genoma Bacteriano/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mutación/genética , Mycobacterium tuberculosis/efectos de los fármacos , Perú , Fenotipo , Suiza , Tailandia , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuenciación Completa del Genoma/métodos
19.
J Antimicrob Chemother ; 74(4): 944-952, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629184

RESUMEN

OBJECTIVES: Widespread antimicrobial resistance often limits the availability of therapeutic options to only a few last-resort drugs that are themselves challenged by emerging resistance and adverse side effects. Apramycin, an aminoglycoside antibiotic, has a unique chemical structure that evades almost all resistance mechanisms including the RNA methyltransferases frequently encountered in carbapenemase-producing clinical isolates. This study evaluates the in vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii, and provides a rationale for its superior antibacterial activity in the presence of aminoglycoside resistance determinants. METHODS: A thorough antibacterial assessment of apramycin with 1232 clinical isolates from Europe, Asia, Africa and South America was performed by standard CLSI broth microdilution testing. WGS and susceptibility testing with an engineered panel of aminoglycoside resistance-conferring determinants were used to provide a mechanistic rationale for the breadth of apramycin activity. RESULTS: MIC distributions and MIC90 values demonstrated broad antibacterial activity of apramycin against Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Morganella morganii, Citrobacter freundii, Providencia spp., Proteus mirabilis, Serratia marcescens and A. baumannii. Genotypic analysis revealed the variety of aminoglycoside-modifying enzymes and rRNA methyltransferases that rendered a remarkable proportion of clinical isolates resistant to standard-of-care aminoglycosides, but not to apramycin. Screening a panel of engineered strains each with a single well-defined resistance mechanism further demonstrated a lack of cross-resistance to gentamicin, amikacin, tobramycin and plazomicin. CONCLUSIONS: Its superior breadth of activity renders apramycin a promising drug candidate for the treatment of systemic Gram-negative infections that are resistant to treatment with other aminoglycoside antibiotics.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Enterobacteriaceae/efectos de los fármacos , Nebramicina/análogos & derivados , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/aislamiento & purificación , África , Aminoglicósidos/farmacología , Asia , Carbapenémicos/farmacología , Enterobacteriaceae/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología , Europa (Continente) , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Nebramicina/farmacología , América del Sur , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA