Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 106(2): 402-414, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30723889

RESUMEN

Traditional drug discovery is an inefficient process. Human pluripotent stem cell-derived cardiomyocytes can potentially fill the gap between animal and clinical studies, but conventional two-dimensional cultures inadequately recapitulate the human cardiac phenotype. Here, we systematically examined the pharmacological responses of engineered human ventricular-like cardiac tissue strips (hvCTS) and organoid chambers (hvCOC) to 25 cardioactive compounds covering various drug classes. While hvCTS effectively detected negative and null inotropic effects, the sensitivity to positive inotropes was modest. We further quantified the predictive capacity of hvCTS in a blinded screening, with accuracies for negative, positive, and null inotropic effects at 100%, 86%, and 80%, respectively. Interestingly, hvCOC, with a pro-maturation milieu that yields physiologically complex parameters, displayed enhanced positive inotropy. Based on these results, we propose a two-tiered screening system for avoiding false positives and negatives. Such an approach would facilitate drug discovery by leading to better overall success.


Asunto(s)
Cardiotónicos/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos , Organoides , Fármacos Cardiovasculares/farmacología , Células Cultivadas , Depresión Química , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Células Madre Pluripotentes Inducidas , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Organoides/efectos de los fármacos , Organoides/fisiología , Estimulación Química , Ingeniería de Tejidos/métodos
2.
Biomaterials ; 163: 116-127, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29459321

RESUMEN

Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca2+-handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development.


Asunto(s)
Materiales Biomiméticos/química , Ventrículos Cardíacos/citología , Miocardio/citología , Células Madre Pluripotentes/citología , Potenciales de Acción , Materiales Biomiméticos/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Colágeno/química , Fenómenos Electrofisiológicos , Humanos , Hidrogeles , Contracción Miocárdica , Miocitos Cardíacos/citología , Ingeniería de Tejidos , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA