RESUMEN
Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo. These particles could have been produced during the post-inflationary epoch and match the relic abundance of dark matter inferred today. The nonobservation of the signatures searched for allows us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: α_{X}â²0.09, for 10^{9}â²M_{X}/GeV<10^{19}. Conversely, we obtain that, for instance, a reduced coupling constant α_{X}=0.09 excludes masses M_{X}â³3×10^{13} GeV. In the context of dark matter production from gravitational interactions alone, we illustrate how these bounds are complementary to those obtained on the Hubble rate at the end of inflation from the nonobservation of tensor modes in the cosmological microwave background.
RESUMEN
We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.
RESUMEN
We report a measurement of the energy spectrum of cosmic rays above 2.5×10^{18} eV based on 215 030 events. New results are presented: at about 1.3×10^{19} eV, the spectral index changes from 2.51±0.03(stat)±0.05(syst) to 3.05±0.05(stat)±0.10(syst), evolving to 5.1±0.3(stat)±0.1(syst) beyond 5×10^{19} eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above 5×10^{18} eV is [5.66±0.03(stat)±1.40(syst)]×10^{53} erg Mpc^{-3}.
RESUMEN
Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.
RESUMEN
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.
RESUMEN
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.