Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mutat ; 43(4): 499-510, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112413

RESUMEN

Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is underrepresented in the human genome variation databases. Here we describe insights from Phase 1 of the Qatar Genome Program with whole genome sequenced 6047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighboring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history, and genetic contributions to health and diseases in diverse populations.


Asunto(s)
Genoma Humano , Genómica , Consanguinidad , Genética de Población , Genoma Humano/genética , Genómica/métodos , Humanos , Medio Oriente , Qatar/epidemiología
2.
J Hum Genet ; 65(12): 1067-1073, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32724056

RESUMEN

Genomics has the potential to revolutionize medical approaches to disease prevention, diagnosis, and treatment, but it does not come without challenges. The success of a national population-based genome program, like the Qatar Genome Program (QGP), depends on the willingness of citizens to donate samples and take up genomic testing services. This study explores public attitudes of the Qatari population toward genetic testing and toward participating in the QGP. A representative sample of 837 adult Qataris was surveyed in May 2016. Approximately 71% of respondents surveyed reported that they were willing to participate in the activities of the QGP. Willingness to participate was significantly associated with basic literacy in genetics, a family history of genetic diseases, and previous experience with genetic testing through premarital screening. Respondents cited the desire to know more about their health status as the principle motivation for participating, while lack of time and information were reported as the most important barriers. With QGP plans to ramp up the scale of its national operation toward more integration into clinical care settings, it is critical to understand public attitudes and their determinants. The results demonstrate public support but also identify the need for more education and individual counseling that not only provide information on the process, challenges, and benefits of genomic testing, but that also address concerns about information security.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/tendencias , Opinión Pública , Encuestas y Cuestionarios , Adulto , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/psicología , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino , Persona de Mediana Edad , Qatar/epidemiología , Adulto Joven
3.
J Biomed Inform ; 66: 231-240, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28126604

RESUMEN

The problem of biomedical data sharing is a form of gambling; on one hand it incurs the risk of privacy violations and on the other it stands to profit from knowledge discovery. In general, the risk of granting data access to a user depends heavily upon the data requested, the purpose for the access, the user requesting the data (user motives) and the security of the user's environment. While traditional manual biomedical data sharing processes (based on institutional review boards) are lengthy and demanding, the automated ones (known as honest broker systems) disregard the individualities of different requests and offer "one-size-fits-all" solutions to all data requestors. In this manuscript, we propose a conceptual risk-aware data sharing system; the system brings the concept of risk, from all contextual information surrounding a data request, into the data disclosure decision module. The decision module, in turn, imposes mitigation measures to counter the calculated risk.


Asunto(s)
Seguridad Computacional , Difusión de la Información , Comités de Ética en Investigación , Humanos , Privacidad , Riesgo
4.
Clin Transl Sci ; 17(6): e13800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38818903

RESUMEN

Pharmacogenetic (PGx)-informed medication prescription is a cutting-edge genomic application in contemporary medicine, offering the potential to overcome the conventional "trial-and-error" approach in drug prescription. The ability to use an individual's genetic profile to predict drug responses allows for personalized drug and dosage selection, thereby enhancing the safety and efficacy of treatments. However, despite significant scientific and clinical advancements in PGx, its integration into routine healthcare practices remains limited. To address this gap, the Qatar Genome Program (QGP) has embarked on an ambitious initiative known as QPGx-CARES (Qatar Pharmacogenetics Clinical Applications and Research Enhancement Strategies), which aims to set a roadmap for optimizing PGx research and clinical implementation on a national scale. The goal of QPGx-CARES initiative is to integrate PGx testing into clinical settings with the aim of improving patient health outcomes. In 2022, QGP initiated several implementation projects in various clinical settings. These projects aimed to evaluate the clinical utility of PGx testing, gather valuable insights into the effective dissemination of PGx data to healthcare professionals and patients, and identify the gaps and the challenges for wider adoption. QPGx-CARES strategy aimed to integrate evidence-based PGx findings into clinical practice, focusing on implementing PGx testing for cardiovascular medications, supported by robust scientific evidence. The current initiative sets a precedent for the nationwide implementation of precision medicine across diverse clinical domains.


Asunto(s)
Farmacogenética , Medicina de Precisión , Humanos , Qatar , Farmacogenética/métodos , Medicina de Precisión/métodos , Pruebas de Farmacogenómica
5.
NPJ Genom Med ; 7(1): 3, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046417

RESUMEN

Risk genes for Mendelian (single-gene) disorders (SGDs) are consistent across populations, but pathogenic risk variants that cause SGDs are typically population-private. The goal was to develop "QChip1," an inexpensive genotyping microarray to comprehensively screen newborns, couples, and patients for SGD risk variants in Qatar, a small nation on the Arabian Peninsula with a high degree of consanguinity. Over 108 variants in 8445 Qatari were identified for inclusion in a genotyping array containing 165,695 probes for 83,542 known and potentially pathogenic variants in 3438 SGDs. QChip1 had a concordance with whole-genome sequencing of 99.1%. Testing of QChip1 with 2707 Qatari genomes identified 32,674 risk variants, an average of 134 pathogenic alleles per Qatari genome. The most common pathogenic variants were those causing homocystinuria (1.12% risk allele frequency), and Stargardt disease (2.07%). The majority (85%) of Qatari SGD pathogenic variants were not present in Western populations such as European American, South Asian American, and African American in New York City and European and Afro-Caribbean in Puerto Rico; and only 50% were observed in a broad collection of data across the Greater Middle East including Kuwait, Iran, and United Arab Emirates. This study demonstrates the feasibility of developing accurate screening tools to identify SGD risk variants in understudied populations, and the need for ancestry-specific SGD screening tools.

6.
Front Cell Infect Microbiol ; 11: 768883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869069

RESUMEN

Qatar, a country with a strong health system and a diverse population consisting mainly of expatriate residents, has experienced two large waves of COVID-19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population's genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Genómica , Humanos , Qatar/epidemiología
7.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34043590

RESUMEN

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Mutación con Pérdida de Función , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Factor 7 Regulador del Interferón/genética , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Receptor Toll-Like 3/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
8.
Comput Struct Biotechnol J ; 18: 913-921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346464

RESUMEN

While the majority of population-level genome sequencing initiatives claim to follow the principles of informed consent, the requirements for informed consent have not been-well defined in this context. In fact, the implementation of informed consent differs greatly across these initiatives - spanning broad consent, blanket consent, and tiered consent among others. As such, this calls for an investigation into the requirements for consent to be "informed" in the context of population genomics. One particular strategy that claims to be fully informed and to continuously engage participants is called "dynamic consent". Dynamic consent is based on a personalised communication platform that aims to facilitate the consent process. It is oriented to support continuous two-way communication between researchers and participants. In this paper, we analyze the requirements of informed consent in the context of population genomics, review various current implementations of dynamic consent, assess whether they fulfill the requirement of informed consent, and, in turn, enable participants to make autonomous and informed choices on whether or not to participate in research projects.

9.
medRxiv ; 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33398295

RESUMEN

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate genes with severe COVID-19 outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA