Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34187807

RESUMEN

Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.


Asunto(s)
Poliploidía , Regeneración , Animales , Daño del ADN , Corazón/fisiología , Humanos
2.
J Vis Exp ; (160)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32597839

RESUMEN

Polyploidy is a frequent phenomenon whose impact on organismal health and disease is still poorly understood. A cell is defined as polyploid if it contains more than the diploid copy of its chromosomes, which is a result of endoreplication or cell fusion. In tissue repair, wound-induced polyploidization (WIP) has been found to be a conserved healing strategy from fruit flies to vertebrates. WIP has several advantages over cell proliferation, including resistance to oncogenic growth and genotoxic stress. The challenge has been to identify why polyploid cells arise and how these unique cells function. Provided is a detailed protocol to study WIP in the adult fruit fly epithelium where polyploid cells are generated within 2 days after a puncture wound. Taking advantage of D. melanogaster's extensive genetic tool kit, the genes required to initiate and regulate WIP, including Myc, have begun to be identified. Continued studies using this method can reveal how other genetic and physiological variables including sex, diet, and age regulate and influence WIP's function.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Poliploidía , Animales
3.
Front Immunol ; 10: 280, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863400

RESUMEN

Immune-modulatory effects of ß-glucans are generally considered beneficial to fish health. Despite the frequent application of ß-glucans in aquaculture practice, the exact receptors and downstream signalling remains to be described for fish. In mammals, Dectin-1 is a member of the C-type lectin receptor (CLR) family and the best-described receptor for ß-glucans. In fish genomes, no clear homologue of Dectin-1 could be identified so far. Yet, in previous studies we could activate carp macrophages with curdlan, considered a Dectin-1-specific ß-(1,3)-glucan ligand in mammals. It was therefore proposed that immune-modulatory effects of ß-glucan in carp macrophages could be triggered by a member of the CLR family activating the classical CLR signalling pathway, different from Dectin-1. In the current study, we used primary macrophages of common carp to examine immune modulation by ß-glucans using transcriptome analysis of RNA isolated 6 h after stimulation with two different ß-glucan preparations. Pathway analysis of differentially expressed genes (DEGs) showed that both ß-glucans regulate a comparable signalling pathway typical of CLR activation. Carp genome analysis identified 239 genes encoding for proteins with at least one C-type Lectin Domains (CTLD). Narrowing the search for candidate ß-glucan receptors, based on the presence of a conserved glucan-binding motif, identified 13 genes encoding a WxH sugar-binding motif in their CTLD. These genes, however, were not expressed in macrophages. Instead, among the ß-glucan-stimulated DEGs, a total of six CTLD-encoding genes were significantly regulated, all of which were down-regulated in carp macrophages. Several candidates had a protein architecture similar to Dectin-1, therefore potential conservation of synteny of the mammalian Dectin-1 region was investigated by mining the zebrafish genome. Partial conservation of synteny with a region on the zebrafish chromosome 16 highlighted two genes as candidate ß-glucan receptor. Altogether, the regulation of a gene expression profile typical of a signalling pathway associated with CLR activation and, the identification of several candidate ß-glucan receptors, suggest that immune-modulatory effects of ß-glucan in carp macrophages could be a result of signalling mediated by a member of the CLR family.


Asunto(s)
Carpas/inmunología , Proteínas de Peces/inmunología , Lectinas Tipo C/inmunología , Macrófagos/inmunología , Transcriptoma/inmunología , beta-Glucanos/inmunología , Animales , Carpas/genética , Carpas/metabolismo , Células Cultivadas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Lectinas Tipo C/clasificación , Lectinas Tipo C/genética , Macrófagos/metabolismo , Filogenia , Transducción de Señal/genética , Transducción de Señal/inmunología , Sintenía/genética , Sintenía/inmunología , Transcriptoma/genética , Pez Cebra/genética , Pez Cebra/inmunología , Pez Cebra/metabolismo , beta-Glucanos/metabolismo
4.
Skelet Muscle ; 9(1): 21, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391079

RESUMEN

BACKGROUND: Secondary dystroglycanopathies are muscular dystrophies that result from mutations in genes that participate in Dystroglycan glycosylation. Glycosylation of Dystroglycan is essential for muscle fibers to adhere to the muscle extracellular matrix (myomatrix). Although the myomatrix is disrupted in a number of secondary dystroglycanopathies, it is unknown whether improving the myomatrix is beneficial for these conditions. We previously determined that either NAD+ supplementation or overexpression of Paxillin are sufficient to improve muscle structure and the myomatrix in a zebrafish model of primary dystroglycanopathy. Here, we investigate how these modulations affect neuromuscular phenotypes in zebrafish fukutin-related protein (fkrp) morphants modeling FKRP-associated secondary dystroglycanopathy. RESULTS: We found that NAD+ supplementation prior to muscle development improved muscle structure, myotendinous junction structure, and muscle function in fkrp morphants. However, Paxillin overexpression did not improve any of these parameters in fkrp morphants. As movement also requires neuromuscular junction formation, we examined early neuromuscular junction development in fkrp morphants. The length of neuromuscular junctions was disrupted in fkrp morphants. NAD+ supplementation prior to neuromuscular junction development improved length. We investigated NMJ formation in dystroglycan (dag1) morphants and found that although NMJ morphology is disrupted in dag1 morphants, NAD+ is not sufficient to improve NMJ morphology in dag1 morphants. Ubiquitous overexpression of Fkrp rescued the fkrp morphant phenotype but muscle-specific overexpression only improved myotendinous junction structure. CONCLUSIONS: These data indicate that Fkrp plays an early and essential role in muscle, myotendinous junction, and neuromuscular junction development. These data also indicate that, at least in the zebrafish model, FKRP-associated dystroglycanopathy does not exactly phenocopy DG-deficiency. Paxillin overexpression improves muscle structure in dag1 morphants but not fkrp morphants. In contrast, NAD+ supplementation improves NMJ morphology in fkrp morphants but not dag1 morphants. Finally, these data show that muscle-specific expression of Fkrp is insufficient to rescue muscle development and homeostasis.


Asunto(s)
Distroglicanos/deficiencia , Distroglicanos/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , NAD/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Glicosilación , Humanos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Distrofia Muscular Animal/patología , Mutación , NAD/administración & dosificación , Unión Neuromuscular/genética , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Paxillin/genética , Paxillin/metabolismo , Regulación hacia Arriba , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA