Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982580

RESUMEN

Antigen 43 (Ag43) expression induces aggregation and biofilm formation that has consequences for bacterial colonisation and infection. Ag43 is secreted through the Type 5 subtype "a" secretion system (T5aSS) and is a prototypical member of the family of self-associating autotransporters (SAATs). As a T5aSS protein, Ag43 has a modular architecture comprised of (i) a signal peptide, (ii) a passenger domain that can be subdivided into three subdomains (SL, EJ, and BL), (iii) an autochaperone (AC) domain, and (iv) an outer membrane translocator. The cell-surface SL subdomain is directly involved in the "Velcro-handshake" mechanism resulting in bacterial autoaggregation. Ag43 is considered to have a ubiquitous distribution in E. coli genomes and many strains harbour multiple agn43 genes. However, recent phylogenetic analyses indicated the existence of four distinct Ag43 classes exhibiting different propensities for autoaggregation and interactions. Given the knowledge of the diversity and distribution of Ag43 in E. coli genomes is incomplete, we have performed a thorough in silico investigation across bacterial genomes. Our comprehensive analyses indicate that Ag43 passenger domains cluster in six phylogenetic classes associated with different SL subdomains. The diversity of Ag43 passenger domains is a result of the association of the SL subtypes with two different EJ-BL-AC modules. We reveal that agn43 is almost exclusively present among bacterial species of the Enterobacteriaceae family and essentially in the Escherichia genus (99.6%) but that it is not ubiquitous in E. coli. The gene is typically present as a single copy but up to five copies of agn43 with different combinations of classes can be observed. The presence of agn43 as well as its different classes appeared to differ between Escherichia phylogroups. Strikingly, agn43 is present in 90% of E. coli from E phylogroup. Our results shed light on Ag43 diversity and provide a rational framework for investigating its role in E. coli ecophysiology and physiopathology.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/fisiología , Proteínas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Filogenia , Prevalencia
2.
Vet Res ; 52(1): 40, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676570

RESUMEN

Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.


Asunto(s)
Inteligencia Artificial/estadística & datos numéricos , Atención a la Salud/métodos , Medicina Veterinaria/métodos , Animales , Medicina Veterinaria/instrumentación
3.
BMC Evol Biol ; 20(1): 165, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33371890

RESUMEN

BACKGROUND: How vascular systems and their respiratory pigments evolved is still debated. While many animals present a vascular system, hemoglobin exists as a blood pigment only in a few groups (vertebrates, annelids, a few arthropod and mollusk species). Hemoglobins are formed of globin sub-units, belonging to multigene families, in various multimeric assemblages. It was so far unclear whether hemoglobin families from different bilaterian groups had a common origin. RESULTS: To unravel globin evolution in bilaterians, we studied the marine annelid Platynereis dumerilii, a species with a slow evolving genome. Platynereis exhibits a closed vascular system filled with extracellular hemoglobin. Platynereis genome and transcriptomes reveal a family of 19 globins, nine of which are predicted to be extracellular. Extracellular globins are produced by specialized cells lining the vessels of the segmental appendages of the worm, serving as gills, and thus likely participate in the assembly of a previously characterized annelid-specific giant hemoglobin. Extracellular globin mRNAs are absent in smaller juveniles, accumulate considerably in growing and more active worms and peak in swarming adults, as the need for O2 culminates. Next, we conducted a metazoan-wide phylogenetic analysis of globins using data from complete genomes. We establish that five globin genes (stem globins) were present in the last common ancestor of bilaterians. Based on these results, we propose a new nomenclature of globins, with five clades. All five ancestral stem-globin clades are retained in some spiralians, while some clades disappeared early in deuterostome and ecdysozoan evolution. All known bilaterian blood globin families are grouped in a single clade (clade I) together with intracellular globins of bilaterians devoid of red blood. CONCLUSIONS: We uncover a complex "pre-blood" evolution of globins, with an early gene radiation in ancestral bilaterians. Circulating hemoglobins in various bilaterian groups evolved convergently, presumably in correlation with animal size and activity. However, all hemoglobins derive from a clade I globin, or cytoglobin, probably involved in intracellular O2 transit and regulation. The annelid Platynereis is remarkable in having a large family of extracellular blood globins, while retaining all clades of ancestral bilaterian globins.


Asunto(s)
Anélidos/clasificación , Anélidos/genética , Evolución Molecular , Globinas/genética , Animales , Genoma/genética , Hemoglobinas/genética
4.
Bioessays ; 40(10): e1800107, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30151860

RESUMEN

The acoel worm Symsagittifera roscoffensis, an early offshoot of the Bilateria and the only well-studied marine acoel that lives in a photosymbiotic relationship, exhibits a centralized nervous system, brain regeneration, and a wide repertoire of complex behaviors such as circatidal rhythmicity, photo/geotaxis, and social interactions. While this animal can be collected by the thousands and is studied historically, significant progress is made over the last decade to develop it as an emerging marine model. The authors here present the feasibility of culturing it in the laboratory and describe the progress made on different areas, including genomic and tissue architectures, highlighting the associated challenges. In light of these developments, and on the ability to access abundant synchronized embryos, the authors put forward S. roscoffensis as a marine system to revisit questions in the areas of photosymbiosis, regeneration, chronobiology, and the study of complex behaviors from a molecular and evolutionary perspective.


Asunto(s)
Encéfalo/fisiología , Platelmintos/fisiología , Regeneración/fisiología , Animales , Organismos Acuáticos , Conducta Animal , Encéfalo/citología , Fenómenos Cronobiológicos , Ritmo Circadiano/genética , Microalgas/fisiología , Microbiota/fisiología , Compuestos de Sulfonio/metabolismo , Simbiosis , Células Madre Totipotentes/fisiología
5.
Mol Biol Evol ; 33(5): 1280-92, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26823446

RESUMEN

The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Secuencia de Bases , Línea Celular Tumoral , Ciona intestinalis , Daño del ADN , Cartilla de ADN , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad
6.
J Biol Chem ; 288(10): 6957-67, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23288852

RESUMEN

Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution).


Asunto(s)
Globinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Evolución Molecular , Perfilación de la Expresión Génica , Variación Genética , Globinas/química , Globinas/genética , Hidrozoos/genética , Hidrozoos/metabolismo , Hibridación in Situ , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/citología , Neuroglobina , Oxígeno/química , Oxígeno/metabolismo , Filogenia , Platelmintos/genética , Platelmintos/metabolismo , Unión Proteica , Precursores de Proteínas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
7.
Vet Res ; 45: 114, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25487348

RESUMEN

Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.


Asunto(s)
Anaplasma phagocytophilum/genética , Anaplasmosis/microbiología , Ciervos , Enfermedades de los Perros/microbiología , Variación Genética , Enfermedades de los Caballos/microbiología , Anaplasma phagocytophilum/clasificación , Anaplasmosis/epidemiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bovinos , Enfermedades de los Bovinos , Enfermedades de los Perros/epidemiología , Perros , Francia , Enfermedades de los Caballos/epidemiología , Caballos , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus/veterinaria , Filogenia , Análisis de Secuencia de ADN/veterinaria
8.
J Hered ; 105(1): 1-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24336862

RESUMEN

Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.


Asunto(s)
Genoma , Genómica/métodos , Invertebrados/clasificación , Invertebrados/genética , Animales , Evolución Biológica , Organizaciones , Filogenia
9.
Neural Dev ; 19(1): 9, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907301

RESUMEN

Acoel flatworms have played a relevant role in classical (and current) discussions on the evolutionary origin of bilaterian animals. This is mostly derived from the apparent simplicity of their body architectures. This tenet has been challenged over the last couple of decades, mostly because detailed studies of their morphology and the introduction of multiple genomic technologies have unveiled a complexity of cell types, tissular arrangements and patterning mechanisms that were hidden below this 'superficial' simplicity. One tissue that has received a particular attention has been the nervous system (NS). The combination of ultrastructural and single cell methodologies has revealed unique cellular diversity and developmental trajectories for most of their neurons and associated sensory systems. Moreover, the great diversity in NS architectures shown by different acoels offers us with a unique group of animals where to study key aspects of neurogenesis and diversification od neural systems over evolutionary time.In this review we revisit some recent developments in the characterization of the acoel nervous system structure and the regulatory mechanisms that contribute to their embryological development. We end up by suggesting some promising avenues to better understand how this tissue is organized in its finest cellular details and how to achieve a deeper knowledge of the functional roles that genes and gene networks play in its construction.


Asunto(s)
Sistema Nervioso , Neurogénesis , Animales , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/embriología , Neurogénesis/fisiología , Platelmintos/crecimiento & desarrollo , Platelmintos/fisiología , Evolución Biológica , Neuronas/citología , Neuronas/fisiología
10.
Mar Environ Res ; 199: 106617, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38917659

RESUMEN

Photosymbiosis indicates a long-term association between animals and photosynthetic organisms. It has been mainly investigated in photosymbiotic cnidarians, while other photosymbiotic associations have been largely neglected. The acoel Symsagittifera roscoffensis lives in obligatory symbiosis with the microalgal Tetraselmis convolutae and has recently emerged as alternative model to study photosymbiosis. Here, we investigated the effects of Bisphenol A, a common plastic additive, on two pivotal stages of its lifecycle: aposymbiotic juvenile development and photosymbiogenesis. Based on our results, this pollutant altered the development of the worms and their capacity to engulf algae from the environment at concentrations higher than the levels detected in seawater, yet aligning with those documented in sediments of populated areas. Data provide novel information about the effects of pollutants on photosymbiotic associations and prompt the necessity to monitor their concentrations in marine environmental matrices.

11.
J Microbiol Methods ; 222: 106941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714225

RESUMEN

Reliable detection of bacteria belonging to the Borrelia burgdorferi sensu lato species complex in vertebrate reservoirs, tick vectors, and patients is key to answer questions regarding Lyme borreliosis epidemiology. Nevertheless, the description of characteristics of qPCRs for the detection of B. burgdorferi s. l. are often limited. This study covers the development and validation of two duplex taqman qPCR assays used to target four markers on the chromosome of genospecies of B. burgdorferi s. l. Analytical specificity was determined with a panel of spirochete strains. qPCR characteristics were specified using water or tick DNA spiked with controlled quantities of the targeted DNA sequences of B. afzelii, B. burgdorferi sensu stricto or B. bavariensis. The effectiveness of detection results was finally evaluated using DNA extracted from ticks and biopsies from mammals whose infectious status had been determined by other detection assays. The developed qPCR assays allow exclusive detection of B. burgdorferi s. l. with the exception of the M16 marker which also detect relapsing fever Borreliae. The limit of detection is between 10 and 40 copies per qPCR reaction depending on the sample type, the B. burgdorferi genospecies and the targeted marker. Detection tests performed on various kind of samples illustrated the accuracy and robustness of our qPCR assays. Within the defined limits, this multi-target qPCR method allows a versatile detection of B. burgdorferi s. l., regardless of the genospecies and the sample material analyzed, with a sensitivity that would be compatible with most applications and a reproducibility of 100% under measurement conditions of limits of detection, thereby limiting result ambiguities.


Asunto(s)
Grupo Borrelia Burgdorferi , ADN Bacteriano , Enfermedad de Lyme , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/microbiología , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/aislamiento & purificación , Grupo Borrelia Burgdorferi/clasificación , ADN Bacteriano/genética , Humanos , Garrapatas/microbiología , Borrelia burgdorferi/genética , Borrelia burgdorferi/aislamiento & purificación
12.
Mol Biol Evol ; 29(7): 1735-45, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22319164

RESUMEN

In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbellids, acoelomorphs, and nemertodermatids. Here, we report the results of a phylogenetic and comparative genomic analysis of the globin gene repertoire of deuterostomes. We first characterized the globin genes of the acorn worm, Saccoglossus kowalevskii, a representative of the phylum Hemichordata. We then integrated genomic sequence data from the acorn worm into a comprehensive analysis of conserved synteny and phylogenetic relationships among globin genes from representatives of the eight lineages that comprise the superphylum Deuterostomia. The primary aims were 1) to unravel the evolutionary history of the globin gene superfamily in deuterostomes and 2) to use the estimated phylogeny to gain insights into the functional evolution of deuterostome globins. Results of our analyses indicate that the deuterostome common ancestor possessed a repertoire of at least four distinct globin paralogs and that different subsets of these ancestral genes have been retained in each of the descendant organismal lineages. In each major deuterostome group, a different subset of ancestral precursor genes underwent lineage-specific expansions of functional diversity through repeated rounds of gene duplication and divergence. By integrating results of the phylogenetic analysis with available functional data, we discovered that circulating oxygen-transport hemoglobins evolved independently in several deuterostome lineages and that intracellular nerve globins evolved independently in chordates and acoelomorph worms.


Asunto(s)
Evolución Molecular , Globinas/genética , Invertebrados/genética , Animales , Filogenia
13.
Dev Genes Evol ; 223(3): 149-57, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23143292

RESUMEN

Flatworms are classically considered to represent the simplest organizational form of all living bilaterians with a true central nervous system. Based on their simple body plans, all flatworms have been traditionally grouped together in a single phylum at the base of the bilaterians. Current molecular phylogenomic studies now split the flatworms into two widely separated clades, the acoelomorph flatworms and the platyhelminth flatworms, such that the last common ancestor of both clades corresponds to the urbilaterian ancestor of all bilaterian animals. Remarkably, recent comparative neuroanatomical analyses of acoelomorphs and platyhelminths show that both of these flatworm groups have complex anterior brains with surprisingly similar basic neuroarchitectures. Taken together, these findings imply that fundamental neuroanatomical features of the brain in the two separate flatworm groups are likely to be primitive and derived from the urbilaterian brain.


Asunto(s)
Encéfalo/anatomía & histología , Platelmintos/clasificación , Animales , Filogenia
14.
Front Zool ; 10(1): 19, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23587092

RESUMEN

INTRODUCTION: Loricifera is a group of small, marine animals, with undetermined phylogenetic relationships within Ecdysozoa (molting protostome animals). Despite their well-known external morphology, data on the internal anatomy of loriciferans are still incomplete. Aiming to increase the knowledge of this enigmatic phylum, we reconstruct for the first time the three-dimensional myoanatomy of loriciferans. Adult Nanaloricus sp. and the Higgins larva of Armorloricus elegans were investigated with cytochemical labeling techniques and CLSM. We discuss our findings with reference to other loriciferan species and recently established phylogenies. RESULTS: The somatic musculature of both adult and larval stages is very complex and includes several muscles arranged in three orientations: circular, transverse and longitudinal. In adult Nanaloricus sp., the introvert is characterized by a net-like muscular arrangement, which is composed of five thin circular fibers crossed by several (up to 30) thin longitudinal fibers with bifurcated anterior ends. Two sets of muscles surround the pre-pharyngeal armature: 6 buccal tube retractors arranged 3 × 2 in a conical shaped structure, and 8 mouth cone retractors. Additionally, a thick, circular muscle marks the neck region and a putative anal sphincter is the posteriormost myoanatomical feature. In the Higgins larva of A. elegans, two circular muscles are distinguished anteriorly in the introvert: a dorsal semicircular fiber and a thin ring muscle. The posteriormost region of the body is characterized by an anal sphincter and a triangular muscle. CONCLUSIONS: Based on the currently available knowledge, the myoanatomical bodyplan of adult loriciferans includes: (i) 8 mouth cone retractors, (ii) a pharynx bulb composed of transversal fibers arranged radially, (iii) circular muscles of the head and neck, (iv) internal muscles of the spinoscalids, (v) longitudinal muscles spanning all body regions, and (vi) transverse (circular) muscles in the abdomen. Concerning the Higgins larva, the muscle subsets assigned to its myoanatomical ground pattern are the (i) longitudinal retractors of the mouth cone, introvert, and abdomen, (ii) abdominal transverse muscles, and (iii) a pharynx bulb composed of transverse, radial fibers. In a comparison with phyla traditionally regarded as phylogenetically close, our data show that the overall myoanatomy of Loricifera is more similar to Kinorhyncha and Nematomorpha than to Priapulida. However, the head musculature of all these groups is very similar, which supports homology of their introverts and head morphology.

15.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486749

RESUMEN

Mycoplasma bovis is a major aetiological agent of bovine respiratory disease worldwide. Genome-based analyses are increasingly being used to monitor the genetic diversity and global distribution of M. bovis, complementing existing subtyping schemes based on locus sequencing. However, these analyses have so far provided limited information on the spatiotemporal and population dynamics of circulating subtypes. Here we applied a genome-wide phylodynamic approach to explore the epidemic dynamics of 88 French M. bovis strains collected between 2000 and 2019 in France and belonging to the currently dominant polC subtype 2 (st2). A strong molecular clock signal detected in the genomic data enabled robust phylodynamic inferences, which estimated that the M. bovis st2 population in France is composed of two lineages that successively emerged from independent introductions of international strains. The first lineage appeared around 2000 and supplanted the previously established antimicrobial-susceptible polC subtype 1. The second lineage, which is likely more transmissible, progressively replaced the first M. bovis st2 lineage population from 2005 onward and became predominant after 2010. Analyses also showed a brief decline in this second M. bovis st2 lineage population in around 2011, possibly due to the challenge from the concurrent emergence of M. bovis polC subtype 3 in France. Finally, we identified non-synonymous mutations in genes associated with lineages, which raises prospects for identifying new surveillance molecular markers. A genome-wide phylodynamic approach provides valuable resources for monitoring the evolution and epidemic dynamics of circulating M. bovis subtypes, and may prove critical for developing more effective surveillance systems and disease control strategies.


Asunto(s)
Genoma Bacteriano , Infecciones por Mycoplasma , Mycoplasma bovis , Filogenia , Mycoplasma bovis/genética , Mycoplasma bovis/aislamiento & purificación , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Francia/epidemiología , Enfermedades de los Bovinos/epidemiología , Animales , Aptitud Genética
16.
G3 (Bethesda) ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36542495

RESUMEN

Symsagittifera roscoffensis is a well-known member of the order Acoela that lives in symbiosis with the algae Tetraselmis convolutae during its adult stage. Its natural habitat is the eastern coast of the Atlantic, where at specific locations thousands of individuals can be found, mostly, lying in large pools on the surface of sand at low tide. As a member of the Acoela it has been thought as a proxy for ancestral bilaterian animals; however, its phylogenetic position remains still debated. In order to understand the basic structural characteristics of the acoel genome, we sequenced and assembled the genome of aposymbiotic species S. roscoffensis. The size of this genome was measured to be in the range of 910-940 Mb. Sequencing of the genome was performed using PacBio Hi-Fi technology. Hi-C and RNA-seq data were also generated to scaffold and annotate it. The resulting assembly is 1.1 Gb large (covering 118% of the estimated genome size) and highly continuous, with N50 scaffold size of 1.04 Mb. The repetitive fraction of the genome is 61%, of which 85% (half of the genome) are LTR retrotransposons. Genome-guided transcriptome assembly identified 34,493 genes, of which 29,351 are protein coding (BUSCO score 97.6%), and 30.2% of genes are spliced leader trans-spliced. The completeness of this genome suggests that it can be used extensively to characterize gene families and conduct accurate phylogenomic reconstructions.


Asunto(s)
Platelmintos , Animales , Platelmintos/genética , Filogenia , Secuencia de Bases , Tamaño del Genoma , Transcriptoma , Cromosomas
18.
BMC Evol Biol ; 10: 309, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20942955

RESUMEN

BACKGROUND: Acoels are simply organized unsegmented worms, lacking hindgut and anus. Several publications over recent years challenge the long-held view that acoels are early offshoots of the flatworms. Instead a basal position as sister group to all other bilaterian animals was suggested, mainly based on molecular evidence. This led to the view that features of acoels might reflect those of the last common ancestor of Bilateria, and resulted in several evo-devo studies trying to interpret bilaterian evolution using acoels as a proxy model for the "Urbilateria". RESULTS: We describe the first complete mitochondrial genome sequence of a member of the Acoela, Symsagittifera roscoffensis. Gene content and circular organization of the mitochondrial genome does not significantly differ from other bilaterian animals. However, gene order shows no similarity to any other mitochondrial genome within the Metazoa. Phylogenetic analyses of concatenated alignments of amino acid sequences from protein coding genes support a position of Acoela and Nemertodermatida as the sister group to all other Bilateria. Our data provided no support for a sister group relationship between Xenoturbellida and Acoela or Acoelomorpha. The phylogenetic position of Xenoturbella bocki as sister group to or part of the deuterostomes was also unstable. CONCLUSIONS: Our phylogenetic analysis supports the view that acoels and nemertodermatids are the earliest divergent extant lineage of Bilateria. As such they remain a valid source for seeking primitive characters present in the last common ancestor of Bilateria. Gene order of mitochondrial genomes seems to be very variable among Acoela and Nemertodermatida and the groundplan for the metazoan mitochondrial genome remains elusive. More data are needed to interpret mitochondrial genome evolution at the base of Bilateria.


Asunto(s)
Genoma Mitocondrial/genética , Filogenia , Platelmintos/clasificación , Platelmintos/genética , Animales , Orden Génico/genética , Datos de Secuencia Molecular
19.
Dev Growth Differ ; 52(8): 701-13, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20874714

RESUMEN

Due to its proposed basal position in the bilaterian Tree of Life, Acoela may hold the key to our understanding of the evolution of a number of bodyplan features including the central nervous system. In order to contribute novel data to this discussion we investigated the distribution of α-tubulin and the neurotransmitters serotonin and RFamide in juveniles and adults of the sagittiferid Symsagittifera roscoffensis. In addition, we present the expression pattern of the neuropatterning gene SoxB1. Adults and juveniles exhibit six serotonergic longitudinal neurite bundles and an anterior concentration of serotonergic sensory cells. While juveniles show an "orthogon-like" arrangement of longitudinal neurite bundles along the anterior-posterior axis, it appears more diffuse in the posterior region of adults. Commissures between the six neurite bundles are present only in the anterior body region of adults, while irregularly distributed individual neurites, often interconnected by serotonergic nerve cells, are found in the posterior region. Anti-RFamide staining shows numerous individual neurites around the statocyst. The orthogon-like nervous system of S. roscoffensis is confirmed by α-tubulin immunoreactivity. In the region of highest neurotransmitter density (i.e., anterior), the HMG-box gene SrSoxB1, a transcription factor known to be involved in neurogenesis in other bilaterians, is expressed in juvenile specimens. Accordingly, SoxB1 expression in S. roscoffensis follows the typical pattern of higher bilaterians that have a brain. Thus, our data support the notion that Urbilateria already had the genetic toolkit required to form brain-like neural structures, but that its morphological degree of neural concentration was still low.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Neurogénesis , Platelmintos/crecimiento & desarrollo , Animales , Etiquetas de Secuencia Expresada , Inmunohistoquímica , Hibridación in Situ , Microscopía Electrónica de Rastreo
20.
Arch Microbiol ; 192(7): 559-67, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20495786

RESUMEN

The vertical distribution of OP11, OD1 and SR1 divisions in the oxycline and in the anoxic water column of Lake Pavin, a freshwater permanently stratified mountain lake in France, was determined by temporal temperature gel gradient electrophoresis and 16S rRNA clone libraries. Gradual changes in the community structure were noted in relation to environmental variables along the oxidized/reduced environment. In addition, a separate effort to identify members of these lineages in the oxic mixolimnion identified sequences affiliated to SR1 and OP11 divisions, indicating that they are more widespread than previously expected.


Asunto(s)
Bacterias/clasificación , Agua Dulce/microbiología , Microbiología del Agua , Bacterias/genética , Secuencia de Bases , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA