RESUMEN
The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/ß and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR.
Asunto(s)
Hueso Esponjoso/efectos de los fármacos , Hueso Cortical/efectos de los fármacos , Compuestos de Trialquiltina/farmacología , Animales , Calcificación Fisiológica/efectos de los fármacos , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Receptores X del Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Bone formation and aging are sexually dimorphic. Yet, definition of the intrinsic molecular differences between male and female multipotent mesenchymal stromal cells (MSCs) in bone is lacking. This study assessed sex-linked differences in MSC differentiation in 3-, 6-, and 9-month-old C57BL/6J mice. Analysis of tibiae showed that female mice had lower bone volume fraction and higher adipocyte content in the bone marrow compared to age-matched males. While both males and females lost bone mass in early aging, the rate of loss was higher in males. Similar expression of bone- and adipocyte-related genes was seen in males and females at 3 and 9 months, while at 6 months, females exhibited a twofold greater expression of these genes. Under osteogenic culture conditions, bone marrow MSCs from female 3- and 6-month-old mice expressed similar levels of bone-related genes, but significantly greater levels of adipocyte-related genes, than male MSCs. Female MSCs also responded to rosiglitazone-induced suppression of osteogenesis at a 5-fold lower (10 nM) concentration than male MSCs. Female MSCs grown in estrogen-stripped medium showed similar responses to rosiglitazone as MSCs grown in serum containing estrogen. MSCs from female mice that had undergone ovariectomy before sexual maturity also were sensitive to rosiglitazone-induced effects on osteogenesis. These results suggest that female MSCs are more sensitive to modulation of differentiation by PPARγ and that these differences are intrinsic to the sex of the animal from which the MSCs came. These results also may explain the sensitivity of women to the deleterious effects of rosiglitazone on bone.
Asunto(s)
Adipocitos/citología , Adipogénesis , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Adipocitos/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Caracteres SexualesRESUMEN
Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR.
Asunto(s)
Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Compuestos de Trialquiltina/farmacología , Animales , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Compuestos de Trialquiltina/toxicidadRESUMEN
Organotins are industrial chemicals and agricultural pesticides, and they contaminate both outdoor and indoor environments. Organotins are detectable in human sera at biologically active concentrations and are immuno-and neuro-toxicants. Triphenyltin, tributyltin (TBT) and dibutyltin activate peroxisome proliferator-activated receptor γ in bone marrow multipotent mesenchymal stromal cells and promote adipogenesis. TBT also has been shown to suppress osteogenesis; osteoblasts not only support bone homeostasis but also support B lymphopoiesis. In addition, developing B cells are highly sensitive to exogenous insults. Thus, we hypothesized that bone marrow B cells may be negatively affected by TBT exposure both directly, through activation of apoptosis, and indirectly, through alterations of the bone marrow microenvironment. TBT activated apoptosis in developing B cells at environmentally relevant concentrations (as low as 80 nM) in vitro, via a mechanism that is distinct from that induced by high dose (µM) TBT and that requires p53. TBT suppressed the proliferation of hematopoietic cells in an ex vivo bone marrow model. Concurrent treatment of stromal cells and B cells or pretreatment of stromal cells with TBT induced adipogenesis in the stromal cells and reduced the progression of B cells from the early pro B (Hardy fraction B) to the pre B stage (Hardy fraction D). In vivo, TBT induced adipogenesis in bone marrow, reduced "aging-sensitive" AA4+CD19+ B cells in bone marrow, and reduced splenic B cell numbers. Immunosenescence and osteoporosis are adverse health effects of aging, we postulate that TBT exposure may mimic, and possibly intensify, these pathologies.
Asunto(s)
Linfocitos B/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Adipogénesis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Linfocitos B/citología , Relación Dosis-Respuesta a Droga , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BLRESUMEN
Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator-activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10-20 nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology.