Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 30(23): 6162-6177, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34416064

RESUMEN

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


Asunto(s)
Orca , Animales , Genoma , Homocigoto , Endogamia , Masculino , Polimorfismo de Nucleótido Simple , Densidad de Población , Orca/genética
2.
Mol Ecol ; 28(11): 2886-2902, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31002212

RESUMEN

Genomic phylogeography plays an important role in describing evolutionary processes and their geographic, ecological, or cultural drivers. These drivers are often poorly understood in marine environments, which have fewer obvious barriers to mixing than terrestrial environments. Taxonomic uncertainty of some taxa (e.g., cetaceans), due to the difficulty in obtaining morphological data, can hamper our understanding of these processes. One such taxon, the short-finned pilot whale, is recognized as a single global species but includes at least two distinct morphological forms described from stranding and drive hunting in Japan, the "Naisa" and "Shiho" forms. Using samples (n = 735) collected throughout their global range, we examine phylogeographic patterns of divergence by comparing mitogenomes and nuclear SNP loci. Our results suggest three types within the species: an Atlantic Ocean type, a western/central Pacific and Indian Ocean (Naisa) type, and an eastern Pacific Ocean and northern Japan (Shiho) type. mtDNA control region differentiation indicates these three types form two subspecies, separated by the East Pacific Barrier: Shiho short-finned pilot whale, in the eastern Pacific Ocean and northern Japan, and Naisa short-finned pilot whale, throughout the remainder of the species' distribution. Our data further indicate two diverging populations within the Naisa subspecies, in the Atlantic Ocean and western/central Pacific and Indian Oceans, separated by the Benguela Barrier off South Africa. This study reveals a process of divergence and speciation within a globally-distributed, mobile marine predator, and indicates the importance of the East Pacific Barrier to this evolutionary process.


Asunto(s)
Flujo Génico , Variación Genética , Océanos y Mares , Filogeografía , Calderón/clasificación , Calderón/genética , Animales , ADN Mitocondrial/genética , Genoma Mitocondrial , Geografía , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
3.
Mol Ecol ; 28(14): 3427-3444, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31131963

RESUMEN

Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


Asunto(s)
Flujo Génico , Genoma , Orca/genética , Alelos , Animales , Regiones Antárticas , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/genética , Flujo Genético , Variación Genética , Geografía , Cadenas de Markov , Modelos Genéticos , Filogenia , Análisis de Componente Principal
4.
Mol Ecol ; 27(11): 2604-2619, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29675902

RESUMEN

Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally-transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Variación Genética/genética , Mitocondrias/genética , Cachalote/genética , Animales , Demografía , Genética de Población/métodos , Haplotipos/genética , Filogenia , Filogeografía/métodos , Densidad de Población
5.
Immunogenetics ; 65(1): 47-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064401

RESUMEN

On the basis of a general low polymorphism, several studies suggest that balancing selection in the class II major histocompatibility complex (MHC) is weaker in marine mammals as compared with terrestrial mammals. We investigated such differential selection among Cetacea, Artiodactyla, and Primates at exon 2 of MHC-DQB gene by contrasting indicators of molecular evolution such as occurrence of transpecific polymorphisms, patterns of phylogenetic branch lengths by codon position, rates of nonsynonymous and synonymous substitutions as well as accumulation of variable sites on the sampling of alleles. These indicators were compared between the DQB and the mitochondrial cytochrome b gene (cytb) as a reference of neutral expectations and differences between molecular clocks resulting from life history and historical demography. All indicators showed that the influence of balancing selection on the DQB is more variable and overall weaker for cetaceans. In our sampling, ziphiids, the sperm whale, monodontids and the finless porpoise formed a group with lower DQB polymorphism, while mysticetes exhibited a higher DQB variation similar to that of terrestrial mammals as well as higher occurrence of transpecific polymorphisms. Different dolphins appeared in the two groups. Larger variation of selection on the cetacean DQB could be related to greater stochasticity in their historical demography and thus, to a greater complexity of the general ecology and disease processes of these animals.


Asunto(s)
Artiodáctilos/genética , Cetáceos/genética , Evolución Molecular , Genes MHC Clase II , Primates/genética , Animales , Artiodáctilos/inmunología , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Cetáceos/inmunología , Citocromos b/genética , Exones , Variación Genética , Mitocondrias/genética , Filogenia , Polimorfismo de Nucleótido Simple , Primates/inmunología
6.
PLoS One ; 18(9): e0291187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703242

RESUMEN

Detection and identification of species, subspecies or stocks of whales, dolphins and porpoises at sea remain challenging, particularly for cryptic or elusive species like beaked whales (Family: Ziphiidae). Here we investigated the potential for using an acoustically assisted sampling design to collect environmental (e)DNA from beaked whales on the U.S. Navy's Atlantic Undersea Test and Evaluation Center (AUTEC) in The Bahamas. During 12 days of August 2019, we conducted 9 small-boat surveys and collected 56 samples of seawater (paired subsamples of 1L each, including controls) using both a spatial collection design in the absence of visual confirmation of whales, and a serial collection design in the proximity of whales at the surface. There were 7 sightings of whales, including 11 Blainville's beaked whales (Mesoplodon densirostris). All whales were located initially with the assistance of information from a bottom-mounted acoustic array available on the AUTEC range. Quantification by droplet digital (dd)PCR from the four spatial design collections showed no samples of eDNA above the threshold of detection and none of these 20 samples yielded amplicons for conventional or next-generation sequencing. Quantification of the 31 samples from four serial collections identified 11 likely positive detections. eDNA barcoding by conventional sequencing and eDNA metabarcoding by next-generation sequencing confirmed species identification for 9 samples from three of the four serial collections. We further resolved five intra-specific variants (i.e., haplotypes), two of which showed an exact match to previously published haplotypes and three that have not been reported previously to the international repository, GenBank. A minimum spanning network of the five eDNA haplotypes, with all other published haplotypes of Blainville's beaked whales, suggested the potential for further resolution of differences between oceanic populations.


Asunto(s)
ADN Ambiental , Delfines , Marsopas , Animales , Ballenas/genética , ADN/genética , ADN Ambiental/genética , Reacción en Cadena de la Polimerasa , Acústica
7.
J Hered ; 100(1): 11-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18495650

RESUMEN

Bottlenose dolphins (Tursiops truncatus) occupy a wide range of coastal and pelagic habitats throughout tropical and temperate waters worldwide. In some regions, "inshore" and "offshore" forms or ecotypes differ genetically and morphologically, despite no obvious boundaries to interchange. Around New Zealand, bottlenose dolphins inhabit 3 coastal regions: Northland, Marlborough Sounds, and Fiordland. Previous demographic studies showed no interchange of individuals among these populations. Here, we describe the genetic structure and diversity of these populations using skin samples collected with a remote biopsy dart. Analysis of the molecular variance from mitochondrial DNA (mtDNA) control region sequences (n = 193) showed considerable differentiation among populations (F(ST) = 0.17, Phi(ST) = 0.21, P < 0.001) suggesting little or no female gene flow or interchange. All 3 populations showed higher mtDNA diversity than expected given their small population sizes and isolation. To explain the source of this variation, 22 control region haplotypes from New Zealand were compared with 108 haplotypes worldwide representing 586 individuals from 19 populations and including both inshore and offshore ecotypes as described in the Western North Atlantic. All haplotypes found in the Pacific, regardless of population habitat use (i.e., coastal or pelagic), are more divergent from populations described as inshore ecotype in the Western North Atlantic than from populations described as offshore ecotype. Analysis of gene flow indicated long-distance dispersal among coastal and pelagic populations worldwide (except for those haplotypes described as inshore ecotype in the Western North Atlantic), suggesting that these populations are interconnected on an evolutionary timescale. This finding suggests that habitat specialization has occurred independently in different ocean basins, perhaps with Tursiops aduncus filling the ecological niche of the inshore ecotype in some coastal regions of the Indian and Western Pacific Oceans.


Asunto(s)
Delfines/genética , Variación Genética , Migración Animal , Animales , Demografía , Delfines/clasificación , Evolución Molecular , Flujo Génico , Genética de Población , Nueva Zelanda , Océano Pacífico , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA