Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 29: 76-84, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24667098

RESUMEN

Outer membrane vesicles (OMVs) are nanoscale proteoliposomes that are ubiquitously secreted by Gram-negative bacteria. Interest in these bioparticles has escalated over the years, leading to discoveries regarding their composition, production, and vaccine potential. Given that many steps in vesicle biogenesis are 'engineerable,' it is now possible to tailor OMVs for specific applications. Such tailoring involves modifying the OMV-producing bacterium through protein, pathway, or genome engineering in a manner that specifically alters the final OMV product. For example, targeted deletion or upregulation of genes associated with the cell envelope can modulate vesicle production or remodel the composition of vesicle components such as lipopolysaccharide. Likewise, bacteria can be reprogrammed to incorporate heterologously expressed proteins into either the membrane or lumenal compartment of OMVs. We anticipate that further research in the field of OMV engineering will enable continued design and biosynthesis of specialized vesicles for numerous biotechnological purposes ranging from the delivery of vaccines to the deconstruction of cellulosic substrates.


Asunto(s)
Bacterias/metabolismo , Membrana Celular/metabolismo , Animales , Bioingeniería , Transporte Biológico , Humanos
2.
Curr Opin Biotechnol ; 28: 51-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24832075

RESUMEN

Vaccine adjuvants are an essential component of vaccine design, helping to generate immunity to pathogen antigens in the absence of infection. Recent advances in nanoscale engineering have created a new class of particulate bionanotechnology that uses biomimicry to better integrate adjuvant and antigen. These pathogen-like particles, or PLPs, can come from a variety of sources, ranging from fully synthetic platforms to biologically derived, self-assembling systems. By employing molecularly engineered targeting and stimulation of key immune cells, recent studies utilizing PLPs as vaccine delivery platforms have shown great promise against high-impact, unsolved vaccine targets ranging from bacterial and viral pathogens to cancer and addiction.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas/inmunología , Adyuvantes Inmunológicos , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Biomimética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
3.
Trends Biotechnol ; 31(5): 313-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23582719

RESUMEN

Glycosylation is the most prevalent post-translational modification found on proteins, occurring in all domains of life. Ever since the discovery of asparagine-linked (N-linked) protein glycosylation pathways in bacteria, major efforts have been made to harness these systems for the creation of novel therapeutics, vaccines, and diagnostics. Recent advances such as the ability to produce designer glycans in bacteria, some containing unnatural sugars, and techniques for evolving glycosylation enzymes have spawned an entirely new discipline known as bacterial glycoengineering. In addition to their biotechnological and therapeutic potential, bacteria equipped with recombinant N-linked glycosylation pathways are improving our understanding of the N-glycosylation process. This review discusses the key role played by microorganisms in glycosciences, particularly in the context of N-linked glycosylation.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Ingeniería Metabólica , Biotecnología
4.
Science ; 335(6065): 233-235, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22194412

RESUMEN

Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Fluoruros/farmacología , Regulación Bacteriana de la Expresión Génica , Pseudomonas syringae/genética , Riboswitch , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Aptámeros de Nucleótidos , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fluoruros/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Conformación de Ácido Nucleico , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Fluoruro de Sodio/metabolismo , Fluoruro de Sodio/farmacología , Transformación Bacteriana
5.
Science ; 329(5993): 845-848, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705859

RESUMEN

Group I self-splicing ribozymes commonly function as components of selfish mobile genetic elements. We identified an allosteric group I ribozyme, wherein self-splicing is regulated by a distinct riboswitch class that senses the bacterial second messenger c-di-GMP. The tandem RNA sensory system resides in the 5' untranslated region of the messenger RNA for a putative virulence gene in the pathogenic bacterium Clostridium difficile. c-di-GMP binding by the riboswitch induces folding changes at atypical splice site junctions to modulate alternative RNA processing. Our findings indicate that some self-splicing ribozymes are not selfish elements but are harnessed by cells as metabolite sensors and genetic regulators.


Asunto(s)
Clostridioides difficile/genética , GMP Cíclico/análogos & derivados , Empalme del ARN , ARN Bacteriano/genética , ARN Catalítico/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Sistemas de Mensajero Secundario , Regiones no Traducidas 5' , Aptámeros de Nucleótidos/química , Emparejamiento Base , Secuencia de Bases , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Codón Iniciador , GMP Cíclico/metabolismo , Exones , Genes Bacterianos , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Catalítico/química , ARN Catalítico/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA