Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 123(9): 1091-1102, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30355158

RESUMEN

RATIONALE: A strong association has emerged between the gut microbiome and atherosclerotic disease. Our recent data suggest Lactobacillus plantarum 299v (Lp299v) supplementation reduces infarct size in male rats. Limited human data are available on the impact of Lp299v on the vasculature. OBJECTIVE: To determine whether oral Lp299v supplementation improves vascular endothelial function and reduces systemic inflammation in humans with stable coronary artery disease (CAD). METHODS AND RESULTS: Twenty men with stable CAD consumed a drink containing Lp299v (20 billion CFU) once daily for 6 weeks. After a 4-week washout, subjects were given an option of additionally participating in a 10-day study of oral liquid vancomycin (250 mg QID). Vascular endothelial function was measured by brachial artery flow-mediated dilation. Before and after Lp299v, plasma short-chain fatty acids, trimethylamine oxide, and adipokine levels were measured. Additional plasma samples underwent unbiased metabolomic analyses using liquid chromatography/mass spectroscopy. 16S rRNA sequencing was used to determine changes of the stool microbiome. Arterioles from patients with CAD were obtained, and endothelium-dependent vasodilation was measured by video microscopy after intraluminal incubation with plasma from Lp299v study subjects. Lp299v supplementation improved brachial flow-mediated dilation ( P=0.008) without significant changes in plasma cholesterol profiles, fasting glucose, or body mass index. Vancomycin did not impact flow-mediated dilation. Lp299v supplementation decreased circulating levels of IL (interleukin)-8 ( P=0.01), IL-12 ( P=0.02), and leptin ( P=0.0007) but did not significantly change plasma trimethylamine oxide concentrations ( P=0.27). Plasma propionate ( P=0.004) increased, whereas acetate levels decreased ( P=0.03). Post-Lp299v plasma improved endothelium-dependent vasodilation in resistance arteries from patients with CAD ( P=0.02).16S rRNA analysis showed the Lactobacillus genus was enriched in postprobiotic stool samples without other changes. CONCLUSIONS: Lp299v improved vascular endothelial function and decreased systemic inflammation in men with CAD, independent of changes in traditional risk factors and trimethylamine oxide. Circulating gut-derived metabolites likely account for these improvements and merit further study. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT01952834.


Asunto(s)
Enfermedad de la Arteria Coronaria/terapia , Citocinas/sangre , Endotelio Vascular/fisiopatología , Mediadores de Inflamación/sangre , Lactobacillus plantarum/crecimiento & desarrollo , Probióticos/administración & dosificación , Vasodilatación , Adipoquinas/sangre , Adulto , Anciano , Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/microbiología , Enfermedad de la Arteria Coronaria/fisiopatología , Endotelio Vascular/metabolismo , Ácidos Grasos/sangre , Heces/microbiología , Microbioma Gastrointestinal , Humanos , Lactobacillus plantarum/genética , Masculino , Metilaminas/sangre , Persona de Mediana Edad , Proyectos Piloto , Probióticos/efectos adversos , Factores de Tiempo , Resultado del Tratamiento
2.
J Pharmacol Exp Ther ; 352(3): 429-37, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512369

RESUMEN

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart. Eltrombopag is a small molecule agonist of the thrombopoietin receptor, the physiologic target of thrombopoietin. However, the ability of eltrombopag and thrombopoietin to protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (n = 6-10/group) were treated with eltrombopag (0.1-30.0 µM) or thrombopoietin (0.1-30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N2/5% CO2) and 16 hours of reoxygenation to determine their ability to confer resistance to myocardial injury. The thrombopoietin receptor c-Mpl was detected in unstimulated human cardiac myocytes by Western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner, with an optimal concentration of 3 µM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple prosurvival pathways; inhibition of Janus kinase-2, proto-oncogene tyrosine-protein kinase, protein kinase B/phosphatidylinositol-3 kinase, p44/42 mitogen-activated protein kinase (MAPK), and p38 MAPK abolished cardiac myocyte protection by eltrombopag and thrombopoietin. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer a long-lasting benefit through activation of prosurvival pathways during ischemia.


Asunto(s)
Benzoatos/farmacología , Cardiotónicos/farmacología , Hidrazinas/farmacología , Miocitos Cardíacos/fisiología , Pirazoles/farmacología , Receptores de Trombopoyetina/agonistas , Receptores de Trombopoyetina/fisiología , Transducción de Señal/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Miocitos Cardíacos/efectos de los fármacos , Proto-Oncogenes Mas , Transducción de Señal/efectos de los fármacos , Trombopoyetina/farmacología
3.
J Biol Chem ; 288(1): 737-46, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23148226

RESUMEN

The ability to interact with cell surface glycosaminoglycans (GAGs) is essential to the cell migration properties of chemokines, but association with soluble GAGs induces the oligomerization of most chemokines including CXCL12. Monomeric CXCL12, but not dimeric CXCL12, is cardioprotective in a number of experimental models of cardiac ischemia. We found that co-administration of heparin, a common treatment for myocardial infarction, abrogated the protective effect of CXCL12 in an ex vivo rat heart model for myocardial infarction. The interaction between CXCL12 and heparin oligosaccharides has previously been analyzed through mutagenesis, in vitro binding assays, and molecular modeling. However, complications from heparin-induced CXCL12 oligomerization and studies using very short oligosaccharides have led to inconsistent conclusions as to the residues involved, the orientation of the binding site, and whether it overlaps with the CXCR4 N-terminal site. We used a constitutively dimeric variant to simplify the NMR analysis of CXCL12-binding heparin oligosaccharides of varying length. Biophysical and mutagenic analyses reveal a CXCL12/heparin interaction surface that lies perpendicular to the dimer interface, does not involve the chemokine N terminus, and partially overlaps with the CXCR4-binding site. We further demonstrate that heparin-mediated enzymatic protection results from the promotion of dimerization rather than direct heparin binding to the CXCL12 N terminus. These results clarify the structural basis for GAG recognition by CXCL12 and lend insight into the development of CXCL12-based therapeutics.


Asunto(s)
Quimiocina CXCL12/metabolismo , Oligosacáridos/química , Receptores CXCR4/metabolismo , Animales , Sitios de Unión , Biofisica/métodos , Cardiotónicos/química , Quimiocinas/metabolismo , Dimerización , Glicosaminoglicanos/química , Heparina/química , Humanos , Concentración 50 Inhibidora , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Infarto del Miocardio/metabolismo , Perfusión , Estructura Terciaria de Proteína , Ratas
4.
FASEB J ; 26(4): 1727-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22247331

RESUMEN

Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 µg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 µg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.


Asunto(s)
Intestinos/microbiología , Metagenoma/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Animales , Antibacterianos/farmacología , Citocinas/sangre , Agua Potable , Humanos , Intestinos/efectos de los fármacos , Leptina/sangre , Leptina/farmacología , Daño por Reperfusión Miocárdica/fisiopatología , Probióticos/uso terapéutico , Ratas , Ratas Endogámicas Dahl , Vancomicina/farmacología
5.
PLoS One ; 18(4): e0283877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37099482

RESUMEN

Long-duration space exploratory missions to the Earth's moon and the planet Mars are actively being planned. Such missions will require humans to live for prolonged periods beyond low earth orbit where astronauts will be continuously exposed to high energy galactic cosmic rays (GCRs). A major unknown is the potential impact of GCRs on the risks of developing degenerative cardiovascular disease, which is a concern to NASA. A ground-based rat model has been used to provide a detailed characterization of the risk of long-term cardiovascular disease from components of GCRs at radiation doses relevant to future human missions beyond low earth orbit. Six month old male WAG/RijCmcr rats were irradiated at a ground-based charged particle accelerator facility with high energy ion beams broadly representative of GCRs: protons, silicon and iron. Irradiation was given either as a single ion beam or as a combination of three ion beams. For the doses used, the single ion beam studies did not show any significant changes in the known cardiac risk factors and no evidence of cardiovascular disease could be demonstrated. In the three ion beam study, the total cholesterol levels in the circulation increased modestly over the 270 day follow up period, and inflammatory cytokines were also increased, transiently, 30 days after irradiation. Perivascular cardiac collagen content, systolic blood pressure and the number of macrophages found in the kidney and in the heart were each increased 270 days after irradiation with 1.5 Gy of the three ion beam grouping. These findings provide evidence for a cardiac vascular pathology and indicate a possible threshold dose for perivascular cardiac fibrosis and increased systemic systolic blood pressure for complex radiation fields during the 9 month follow up period. The development of perivascular cardiac fibrosis and increased systemic systolic blood pressure occurred at a physical dose of the three ion beam grouping (1.5 Gy) that was much lower than that required to show similar outcomes in earlier studies with the same rat strain exposed to photons. Further studies with longer follow up periods may help determine whether humans exposed to lower, mission-relevant doses of GCRs will develop radiation-induced heart disease.


Asunto(s)
Enfermedades Cardiovasculares , Radiación Cósmica , Traumatismos por Radiación , Vuelo Espacial , Humanos , Ratas , Masculino , Animales , Lactante , Astronautas , Radiación Cósmica/efectos adversos , Fibrosis
7.
Front Physiol ; 14: 1316186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260101

RESUMEN

Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.

8.
Toxics ; 10(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36548630

RESUMEN

Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.

9.
Cardiovasc Drugs Ther ; 25(6): 517-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21786213

RESUMEN

OBJECTIVE: Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT. METHODS: Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol. RESULTS: In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P < 0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH. CONCLUSIONS: These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT.


Asunto(s)
Abdomen/cirugía , Sistema Enzimático del Citocromo P-450/metabolismo , Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/prevención & control , Miocardio , Receptor de Bradiquinina B2/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B2 , Circulación Coronaria/efectos de los fármacos , Inhibidores Enzimáticos del Citocromo P-450 , Modelos Animales de Enfermedad , Perros , Femenino , Hemodinámica/efectos de los fármacos , Poscondicionamiento Isquémico/métodos , Masculino , Infarto del Miocardio/enzimología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/enzimología , Miocardio/metabolismo , Miocardio/patología
10.
Synth Biol (Oxf) ; 6(1): ysab023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522784

RESUMEN

A primary objective of the National Aeronautics and Space Administration (NASA) is expansion of humankind's presence outside low-Earth orbit, culminating in permanent interplanetary travel and habitation. Having no inherent means of physiological detection or protection against ionizing radiation, humans incur capricious risk when journeying beyond low-Earth orbit for long periods. NASA has made large investments to analyze pathologies from space radiation exposure, emphasizing the importance of characterizing radiation's physiological effects. Because natural evolution would require many generations to confer resistance against space radiation, immediately pragmatic approaches should be considered. Volitional evolution, defined as humans steering their own heredity, may inevitably retrofit the genome to mitigate resultant pathologies from space radiation exposure. Recently, uniquely radioprotective genes have been identified, conferring local or systemic radiotolerance when overexpressed in vitro and in vivo. Aiding in this process, the CRISPR/Cas9 technique is an inexpensive and reproducible instrument capable of making limited additions and deletions to the genome. Although cohorts can be identified and engineered to protect against radiation, alternative and supplemental strategies should be seriously considered. Advanced propulsion and mild synthetic torpor are perhaps the most likely to be integrated. Interfacing artificial intelligence with genetic engineering using predefined boundary conditions may enable the computational modeling of otherwise overly complex biological networks. The ethical context and boundaries of introducing genetically pioneered humans are considered.

11.
Resuscitation ; 169: 45-52, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666124

RESUMEN

INTRODUCTION: We evaluated the incidence of change in serial 12-lead electrocardiogram (ECG) diagnostic classifications in patients resuscitated from out-of-hospital (OH) cardiac arrest (OHCA) comparing OH to emergency department (ED) ECGs. METHODS: This retrospective case series included: 1) adults (≥ 18 years old), 2) resuscitated from OHCA, 3) ≥ 1 OH and 1 ED ECG/patient, and 4) emergency medical services (EMS) transport to the study hospital. OH and ED ECGs were classified as: 1) STEMI (ST-segment Elevation Myocardial Infarction), 2) Ischemic, and 3) Non-ischemic. Two ED physicians and one cardiologist independently classified all ECGs, then generated a consensus opinion classification for each ECG based on American Heart Association's 2018 Expert Consensus criteria. The most ischemic OH ECG classification was compared with the last ED ECG classification. RESULTS: From 7/27/12 to 7/18/19, 176 patients were entered with a mean age of 61.2 ± 16.6 years; 102/176 (58%) were male. Overall, 504 OH and ED 12-lead ECGs were acquired (2.9 ECGs/patient). ECG classification inter-rater reliability kappa score was 0.63 ± 0.02 (substantial agreement). Overall, 86/176 (49%) changed ECG classification from the OH to ED setting; 69/86 (80%) of these ECGs changed from more to less ischemic classifications. Of 49 OH STEMI ECG classifications, 33/49 (67%) changed to a less ischemic (non-STEMI) ED ECG classification. CONCLUSIONS: Change in 12-lead ECG classification from OH to ED setting in patients resuscitated from OHCA was common (49%). The OH STEMI classification changed to a less ischemic (non-STEMI) ED classification in 67% of cases.


Asunto(s)
Servicios Médicos de Urgencia , Paro Cardíaco Extrahospitalario , Adolescente , Adulto , Anciano , Electrocardiografía , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Paro Cardíaco Extrahospitalario/diagnóstico , Paro Cardíaco Extrahospitalario/terapia , Reproducibilidad de los Resultados , Estudios Retrospectivos
12.
Am J Physiol Heart Circ Physiol ; 298(6): H2201-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20400686

RESUMEN

We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model. In the infarct model, hearts were subjected to 30 min occlusion of the left coronary artery and 2 h reperfusion. Animals were treated with 11,12-EET or 14,15-EET (2.5 mg/kg) alone 15 min before occlusion or with opioid antagonists [naloxone, naltrindole, nor-binaltorphimine (nor-BNI), and d-Phe-Cys-Tyr-d-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), a nonselective, a selective delta, a selective kappa, and a selective mu receptor antagonist, respectively] 10 min before EET administration. In four separate groups, antiserum to Met- and Leu-enkephalin and dynorphin-A-(1-17) was administered 50 min before the 11,12-EET administration. Infarct size expressed as a percent of the area at risk (IS/AAR) was 63.5 + or - 1.2, 45.3 + or - 1.0, and 40.9 + or - 1.2% for control, 11,12-EET, and 14,15-EET, respectively. The protective effects of 11,12-EET were abolished by pretreatment with either naloxone (60.5 + or - 1.8%), naltrindole (60.8 + or - 1.0%), nor-BNI (62.3 + or - 2.8%), or Met-enkephalin antiserum (63.2 + or - 1.7%) but not CTOP (42.0 + or - 3.0%). In isolated heart experiments, 11,12-EET was administered to the perfusate 15 min before 20 min global ischemia followed by 45 min reperfusion in control hearts or in those pretreated with pertussis toxin (48 h). 11,12-EET increased the recovery of left ventricular developed pressure from 33 + or - 1 to 45 + or - 6% (P < 0.05) and reduced IS/AAR from 37 + or - 4 to 20 + or - 3% (P < 0.05). Both pertussis toxin and naloxone abolished these beneficial effects of 11,12-EET. Taken together, these results suggest that the major cardioprotective effects of the EETs depend on activation of a G(i/o) protein-coupled delta- and/or kappa-opioid receptor.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Analgésicos Opioides , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Ácido 8,11,14-Eicosatrienoico/uso terapéutico , Analgésicos Opioides/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Masculino , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Naloxona/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides/fisiología , Somatostatina/análogos & derivados , Somatostatina/farmacología
13.
FASEB Bioadv ; 2(12): 705-719, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33336158

RESUMEN

Cardiac disease is a frequent and significant adverse event associated with radiotherapy for cancer. Identifying the underlying mechanism responsible for radiation injury to the heart will allow interventions to be developed. In the present study, we tested if local kidney irradiation results in remodeling of the shielded, nontargeted heart. One kidney, two kidneys, or the total body of male WAG and Dahl SS rats were irradiated with 10 Gy of X-rays. Local kidney irradiation resulted in systemic hypertension, increased BUN, infiltration of T lymphocytes, natural killer cells, and macrophages into the renal cortex and medulla, and renal fibrosis. Local irradiation of kidneys in WAG rats resulted in remodeling in the nontargeted heart after 120 days, manifested by perivascular fibrosis and increased interventricular septal thickness, but was not seen in Dahl SS rats due to a high baseline level of fibrosis in the sham-irradiated animals. Genetic depletion of T cells mitigated the nephropathy after local kidney irradiation, indicating a role for the immune system in mediating this outcome. Local kidney irradiation resulted in a cascade of pro-inflammatory cytokines and low-molecular weight metabolites into the circulation associated with transmission of signals resulting in pathologic remodeling in the nontargeted heart. A new model is proposed whereby radiation-induced cardiac remodeling in susceptible animals is indirect, with lower hemi body organs such as the kidney exporting factors into the circulation that cause remodeling outside of the irradiated field in the shielded, nontargeted heart. This nontargeted effect appears to be mediated, in part, by the immune system.

14.
Cardiovasc Res ; 77(1): 44-53, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18006466

RESUMEN

AIMS: Thrombopoietin (Tpo) is known for its ability to stimulate platelet production. However, it is currently unknown whether Tpo plays a physiological function in the heart. METHODS AND RESULTS: We assessed the potential protective role of Tpo in vitro and in vivo in two rat models of myocardial ischaemia/reperfusion. Tpo receptor (c-mpl) message was detected in the heart using RT-PCR, and the Tpo receptor protein was detected using western blotting and immunohistochemistry. Tpo treatment immediately before ischaemia reduced myocardial necrosis, apoptosis, and decline in ventricular function following ischaemia/reperfusion in the rat in a concentration- and dose-dependent manner with an optimal concentration of 1.0 ng/mL in vitro and an optimal dose of 0.05 microg/kg iv in vivo. Tpo also reduced infarct size when given after the onset of ischaemia or at reperfusion. Tpo activated JAK-2 (Janus kinase-2) and p44 MAPK (mitogen-activated protein kinase) during reperfusion but not prior to ischaemia. Inhibition of JAK-2 (AG-490), p42/44 MAPK (PD98059), mitochondrial K(ATP) channels (5-HD), and sarcolemmal K(ATP) channels (HMR 1098) abolished Tpo-induced resistance to injury from myocardial ischaemia/reperfusion. AG-490, PD98059, 5-HD, and HMR1098 alone had no effect on cardioprotection. Treatment with a single dose of Tpo (0.05 or 1.0 microg/kg iv) did not result in the elevation of platelet count or haematocrit over a 16-day period. CONCLUSION: A single treatment of Tpo confers cardioprotection through JAK-2, p42/44 MAPK, and K(ATP) channels, suggesting a potential therapeutic role of Tpo in the treatment of injury resulting from myocardial ischaemia and reperfusion.


Asunto(s)
Apoptosis/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Aturdimiento Miocárdico/tratamiento farmacológico , Trombopoyetina/uso terapéutico , Animales , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Técnicas In Vitro , Janus Quinasa 2/fisiología , Canales KATP/fisiología , Masculino , Infarto del Miocardio/patología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/fisiología , Trombopoyetina/farmacología , Factores de Tiempo
15.
Radiat Res ; 192(1): 63-74, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31095446

RESUMEN

Radiotherapy with sparsely ionizing photons is a cornerstone of successful cancer treatment. Age at time of exposure to radiation is known to influence biological outcomes for many end points. The effect of dose and age at exposure upon the occurrence of radiogenic cardiovascular disease is poorly understood. The goal of this work was to determine the response of maleWAG/RijCmcr rats at 6 months of age to gamma rays, and at 6 months or 6 weeks of age to X rays, using clinically relevant biomarkers of cardiovascular disease and kidney injury. Overall, there were significant radiation-induced effects on the levels of bicarbonate (P=0.0016), creatinine (P=0.0002), calcium (P = 0.0009), triglycerides (P = 0.0269) and blood urea nitrogen, albumin, protein, AST, alkaline phosphatase, total cholesterol and HDL (all P < 0.0001). Of those variables with a significant radiation-dose effect, there were significant modifications by age at time of exposure for bicarbonate (P = 0.0033), creatinine (P = 0.0015), AST (P = 0.0040), total cholesterol (P = 0.0006) and blood urea nitrogen, calcium, albumin, protein, alkaline phosphatase and HDL (all P < 0.0001). Cardiac perivascular collagen content was significantly increased in rats that were 8.0 Gy X-ray irradiated at 6 weeks of age (P < 0.047) but not at 6 months of age. While systemic blood pressure was elevated in both cohorts after 8.0 Gy X-ray irradiation (compared to agematched sham-irradiated controls), the magnitude of the increase above baseline was greater in the younger rats (P < 0.05). These findings indicate that dose and age at time of irradiation determine the timeline and severity of cardiac and renal injury.


Asunto(s)
Cardiopatías/etiología , Enfermedades Renales/etiología , Traumatismos Experimentales por Radiación/etiología , Factores de Edad , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma/efectos adversos , Cardiopatías/sangre , Enfermedades Renales/sangre , Masculino , Traumatismos Experimentales por Radiación/sangre , Ratas , Ratas Wistar , Factores de Riesgo
16.
J Mol Cell Cardiol ; 44(2): 345-51, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083188

RESUMEN

The lanthanide cation, gadolinium (Gd) attenuates post-ischemic myocardial stunning. This study tests the hypothesis that Gd also preconditions the myocardium against infarction following ischemia-reperfusion (IR) and explores potential mechanisms underlying Gd-induced cardioprotection. Regional myocardial infarction was induced in rats by occluding the left anterior descending artery for 30 min and reperfusing for 120 min. Rats (n=6/group) were administered intravenous Gd (1 to 100 micromol/kg) 15 min prior to ischemia. Hearts were excised after reperfusion to determine infarct size (IS) and area at risk (AAR). The ratio IS/AAR (%) was reduced by Gd in a "U"-shaped, dose-dependent manner. The minimum dose that reduced IS/AAR was 5 micromol/kg (52+/-5% vs. 64+/-4%), while the dose that reduced IS/AAR maximally was 20 micromol/kg (44+/-4%). Gd also reduced IS/AAR when given 1 min before reperfusion (47+/-3%) but not when given 10 s after reperfusion (60+/-3%). Cardioprotection was maintained if IR was delayed 24-72 h after Gd administration. Cardioprotection by Gd was abolished by inhibition of JAK-2 with AG-490, of p42/44 MAPK with PD98059 or of K(ATP) channels with glibenclamide. None of these agents given alone altered IS/AAR compared with controls. Inhibition of JAK-2 also blocked Gd-induced delayed cardioprotection. Gd may have broad potential roles in IR, as it conferred immediate cardioprotection when given prior to ischemia or prior to reperfusion and delayed cardioprotection for up to 72 h after administration. The mechanism underlying Gd-induced preconditioning appears to be multi-factorial, involving JAK-2, STAT-3 and p44 MAPK pathways, as well as K(ATP) channels.


Asunto(s)
Gadolinio/farmacología , Infarto del Miocardio/prevención & control , Animales , Cardiotónicos/farmacología , Relación Dosis-Respuesta a Droga , Hemodinámica/efectos de los fármacos , Técnicas In Vitro , Janus Quinasa 2/metabolismo , Masculino , Infarto del Miocardio/enzimología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción STAT/metabolismo , Factores de Tiempo
17.
J Pharmacol Exp Ther ; 324(3): 1045-54, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18055876

RESUMEN

Harnessing endogenous cardioprotectants is a novel therapeutic strategy to combat ischemia/reperfusion (I/R) injury. Thrombin causes I/R injury, whereas exogenous adenosine prevents I/R injury. We hypothesized that blocking thrombin receptor activation with a protease-activated receptor (PAR) 4 antagonist would unmask the cardioprotective effects of endogenous adenosine. The protective role of two structurally unrelated PAR4 antagonists, trans-cinnamoyl-YPGKF-amide (tc-Y-NH(2)) and palmitoyl-SGRRYGHALR-amide (P4pal10), were evaluated in two rat models of myocardial I/R injury. P4pal10 (10 microg/kg) treatment before ischemia significantly decreased infarct size (IS) by 31, 21, and 19% when given before, during, and after ischemia in the in vivo model. tc-Y-NH(2) (5 microM) treatment before ischemia decreased IS by 51% in the in vitro model and increased recovery of ventricular function by 26%. To assess whether the cardioprotective effects of PAR4 blockade were due to endogenous adenosine, isolated hearts were treated with a nonselective adenosine receptor blocker, 8-sulfaphenyltheophylline (8-SPT), and tc-Y-NH(2) before ischemia. 8-SPT abolished the protective effects of tc-Y-NH(2) but did not affect IS when given alone. Adenosine-mediated survival pathways were then explored. The cardioprotective effects of tc-Y-NH(2) were abolished by inhibition of Akt (wortmannin), extracellular signal-regulated kinase 1/2 [PD98059 (2'-amino-3'-methoxyflavone)], nitric-oxide synthase [N(G)-monomethyl-l-arginine (l-NMA)], and K(ATP) channels (glibenclamide). PD98059, l-NMA, and glibenclamide alone had no effect on cardioprotection in vitro. Furthermore, inhibition of mitochondrial K(ATP) channels [5-hydroxydecanoic acid (5-HD)] and sarcolemmal K(ATP) channels (sodium (5-(2-(5-chloro-2-methoxybenzamido)ethyl)-2-methoxyphenylsulfonyl)(methylcarbamothioyl)amide; HMR 1098) abolished P4pal10-induced cardioprotection in vivo. Thrombin receptor blockade by PAR4 inhibition provides protection against injury from myocardial I/R by unmasking adenosine receptor signaling and supports the hypothesis of a coupling between thrombin receptors and adenosine receptors.


Asunto(s)
Adenosina/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Receptores de Trombina/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Trombina/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Cardiovasc Res ; 72(1): 143-51, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16930572

RESUMEN

OBJECTIVE: The relative contributions of the fraction of inspired oxygen (FIO2) and atmospheric pressure (ATM) to cardioprotection are unknown. We determined whether the product of FIO2 x ATM (oxygen partial pressure) controls the extent of hyperoxic+hyperbaric-induced cardioprotection and involves activation of nitric oxide synthase (NOS). METHODS: Adult Sprague Dawley rats (n = 10/gp) were treated for 1 h with (1) normoxia+normobaria (21% O2 at 1 ATM), (2) hyperoxia+normobaria (100% O2 at 1 ATM), (3) normoxia+hyperbaria (21% O2 at 2 ATM) and (4) hyperoxia+hyperbaria (100% O2 at 2 ATM). RESULTS: Infarct size following 25 min ischemia and 180 min reperfusion was decreased following hyperoxia+normobaria and normoxia+hyperbaria compared with normoxia+normobaria and further decreased following hyperoxia+hyperbaria treatment. l-NAME (200 microM) reversed the cardioprotective effects of hyperoxia+hyperbaria. Nitrite plus nitrate content was increased 2.2-fold in rats treated with normoxia+hyperbaria and hyperoxia+hyperbaria. NOS3 protein increased 1.2-fold and association of hsp90 with NOS3 four-fold in hyperoxic+hyperbaric rats. CONCLUSIONS: Cardioprotection conferred by hyperoxia+hyperbaria is directly dependent on oxygen availability and mediated by NOS.


Asunto(s)
Oxigenoterapia Hiperbárica , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Activación Enzimática , Proteínas HSP90 de Choque Térmico/metabolismo , Hemo-Oxigenasa 1/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Nitratos/análisis , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Perfusión , Ratas , Ratas Sprague-Dawley
19.
Physiol Genomics ; 25(2): 303-13, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16478827

RESUMEN

The postgenome era has provided resources to link disease phenotypes to the genomic sequence, i.e., creating a disease "phenome." Our detailed characterization of the sequenced BN rat strain (BN/NHsdMcwi) provides the first concerted effort in creating a direct link between a sequenced genome and its resulting biology. For the BN sequence to be of broad value to investigators, these measures need to be put into the context of the spectrum of the laboratory rats, so that their physiology can be benchmarked against the sequenced BN. As a major step in generating a comprehensive cardiovascular and pulmonary disease phenome, we measured 281 traits related to diseases of the heart, lung, and blood (http://pga.mcw.edu) in the sequenced BN. We compared these data with those of the same traits measured across multiple genetic backgrounds, both genders, and differing environments. We show that no single strain, inbred or outbred, can be considered a physiological control strain; what is normal depends on what trait is being measured and the strains' genome backgrounds. We find vast differences between the genders, also dependent on genome background. By combining the values across all strains studied, we generated a "population" mean and normal range of values for each of these traits, which are more genetically representative than the measured values in any single inbred or outbred strain. These data provide a baseline for physiological comparison of traits related to cardiovascular, lung, blood, and renal function in the sequenced BN rats relative to the major strains of rats studied in biomedical research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Genoma , Enfermedades Renales/genética , Enfermedades Pulmonares/genética , Ratas Endogámicas BN/genética , Animales , Bases de Datos Genéticas , Femenino , Variación Genética , Enfermedades Hematológicas/genética , Masculino , Fenotipo , Ratas , Factores Sexuales , Especificidad de la Especie
20.
Circ Res ; 92(9): 992-1000, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12690037

RESUMEN

Hypoxia causes localized pulmonary arterial (PA) constriction to divert blood flow to optimally ventilated regions of the lung. The biochemical mechanisms for this have remained elusive, especially during prolonged exposures to reduced PO2. We have evidence that subacute hypoxia activates 15-lipoxygenase (15-LO) in small PAs of neonatal rabbits maintained for 9 days in hypoxic environments (FiO2=0.12) compared with siblings raised under normoxia. PA microsomal products of 15-LO, 15-hydroxyeicosatetraenoic acid (HETE), 11,14,15-trihydroxyeicosatrienoic acid (THETA), and 11,12,15-THETA were identified by gas chromatography/mass spectrometry. Increased amounts of these products are synthesized in vivo and in vitro by the lungs of animal raised in hypoxic versus normoxic environments. 15-HETE formation is attenuated by lipoxygenase, but not cytochrome P450 or cyclooxygenase inhibitors. Activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane as seen by Western immunoblotting. Immunohistochemical analysis demonstrates that 15-LO expression is clearly localized in vascular cells in lungs from normoxic and hypoxic kits. 15-HETE causes concentration-dependent constriction of PA rings from animals exposed to hypoxic but not normoxic environments. In addition, lipoxygenase inhibitors reduce phenylephrine-induced constriction of PA rings. Therefore, subacute hypoxia increases expression of and activates 15-LO, and enhances sensitivity of pulmonary arteries to its product, 15-HETE. Because 15-HETE is a constrictor in this vascular bed, it may play an important role in hypoxia-induced pulmonary vasoconstriction in rabbit kits. Although a clear causal relationship remains to be demonstrated, these data suggest a previously unrecognized role for 15-LO in hypoxic vasoconstriction in neonatal mammals.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Pulmón/enzimología , Arteria Pulmonar/fisiología , Vasoconstricción , Animales , Animales Recién Nacidos , Ácido Araquidónico/metabolismo , Catálisis , Hipoxia de la Célula , Activación Enzimática , Cromatografía de Gases y Espectrometría de Masas , Ácidos Hidroxieicosatetraenoicos/farmacología , Membranas Intracelulares/enzimología , Pulmón/anatomía & histología , Microsomas/metabolismo , Transporte de Proteínas , Arteria Pulmonar/efectos de los fármacos , Conejos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA