Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mutat ; 41(4): 774-785, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31803959

RESUMEN

Pathological missense mutations in CLCNKB gene give a wide spectrum of clinical phenotypes in Bartter syndrome type III patients. Molecular analysis of the mutated ClC-Kb channels can be helpful to classify the mutations according to their functional alteration. We investigated the functional consequences of nine mutations in the CLCNKB gene causing Bartter syndrome. We first established that all tested mutations lead to decreased ClC-Kb currents. Combining electrophysiological and biochemical methods in Xenopus laevis oocytes and in MDCKII cells, we identified three classes of mutations. One class is characterized by altered channel trafficking. p.A210V, p.P216L, p.G424R, and p.G437R are totally or partially retained in the endoplasmic reticulum. p.S218N is characterized by reduced channel insertion at the plasma membrane and altered pH-sensitivity; thus, it falls in the second class of mutations. Finally, we found a novel class of functionally inactivated mutants normally present at the plasma membrane. Indeed, we found that p.A204T alters the pH-sensitivity, p.A254V abolishes the calcium-sensitivity. p.G219C and p.G465R are probably partially inactive at the plasma membrane. In conclusion, most pathogenic mutants accumulate partly or totally in intracellular compartments, but some mutants are normally present at the membrane surface and simultaneously show a large range of altered channel gating properties.


Asunto(s)
Síndrome de Bartter/genética , Sitios de Unión , Calcio/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Mutación , Multimerización de Proteína , Animales , Síndrome de Bartter/metabolismo , Línea Celular , Humanos , Oocitos/metabolismo , Unión Proteica , Transporte de Proteínas , Xenopus
2.
Am J Physiol Renal Physiol ; 317(2): F435-F443, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188029

RESUMEN

We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.


Asunto(s)
Equilibrio Ácido-Base , Acidosis/enzimología , Factor Natriurético Atrial/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Túbulos Renales Colectores/enzimología , Sodio/orina , Acidosis/genética , Acidosis/fisiopatología , Acidosis/orina , Adaptación Fisiológica , Aldosterona/orina , Animales , GMP Cíclico/orina , Femenino , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Ratones Noqueados , Comunicación Paracrina , Ratas , Transducción de Señal , Xenopus laevis
3.
J Biol Chem ; 292(39): 16109-16121, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28768767

RESUMEN

The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum, PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo, our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes.


Asunto(s)
Antimaláricos/metabolismo , Cloroquina/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Sustitución de Aminoácidos , Animales , Transporte Biológico , Hierro/química , Cinética , Proteínas de Transporte de Membrana/genética , Mutación , Oocitos/metabolismo , Oxidación-Reducción , Técnicas de Placa-Clamp , Proteínas Protozoarias/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
4.
Hum Mol Genet ; 21(6): 1287-98, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22121115

RESUMEN

The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Antiportadores/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Capacitación Espermática/fisiología , Testículo/metabolismo , Animales , Bicarbonatos/metabolismo , Células COS , Células Cultivadas , Cloruros/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Electrofisiología , Humanos , Immunoblotting , Inmunoprecipitación , Masculino , Ratones , Ratones Transgénicos , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Motilidad Espermática , Transportadores de Sulfato , Testículo/citología , Xenopus laevis
5.
Hum Mutat ; 34(10): 1404-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24272871

RESUMEN

Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with diffuse idiopathic bronchiectasis : p.Arg575Trp, identified in a patient also heterozygote for p.Phe508del in the CFTR gene; and p.Val486Ile. Expression of both mutants in Xenopus laevis oocytes abolished SLC26A9-mediated Cl(-) conductance without decreasing protein membrane expression. Coexpression of CFTR with SLC26A9-p.Val486Ile resulted in a significant increase in the Cl(-) current induced by PKA stimulation, similar to that obtained in oocytes expressing CFTR and SLC26A9-WT. In contrast, coexpression of CFTR with SLC26A9-p.Arg575Trp inhibited SLC26A9-enhanced CFTR activation upon PKA. Further structure-function analyses led us to propose a site encompassing Arg575 in the SLC26A9-STAS domain for CFTR-SLC26A9 interaction. We hypothesize that SLC26A9-p.Arg575Trp prevented SLC26A9-mediated functional activation of CFTR by altering SLC26A9-CFTR interaction. Although we cannot confirm that these mutations by themselves are deleterious, we propose that they trigger the pathogenic role of a single CFTR mutation and provide insight into a novel mechanism of Cl(-) transport alteration across the respiratory mucosa, based on functional inhibition of CFTR.


Asunto(s)
Antiportadores/genética , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antiportadores/química , Antiportadores/metabolismo , Estudios de Casos y Controles , Niño , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Exones , Femenino , Expresión Génica , Humanos , Enfermedades Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Oocitos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transportadores de Sulfato , Tomografía Computarizada por Rayos X , Xenopus laevis , Adulto Joven
6.
J Inherit Metab Dis ; 36(1): 103-12, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22644605

RESUMEN

Intellectual disability coupled with epilepsy are clinical hallmarks of the creatine (Cr) transporter deficiency syndrome resulting from mutations in the SLC6A8 gene. So far characterization of pathogenic mutations of SLC6A8 has been limited to Cr uptake. The aim of our study was to characterize the electrogenic and pharmacological properties of non truncating SLC6A8 mutations identified in patients presenting variable clinical severity. Electrophysiological and pharmacological properties of four mutants (including two novel ones) were studied in X. laevis oocyte expression system. Creatine uptake was assessed with [(14)C]-Cr in X. laevis and patients' fibroblasts. Subcellular localization was determined by immunofluorescence and western blot. All mutants were properly targeted to the plasma membrane in both systems. Mutations led to the complete loss of both electrogenic and transport activities in X. laevis and Cr uptake in patients' fibroblasts. Among the Cr analogs tested, guanidinopropionate induced an electrogenic activity with the normal SLC6A8 transporter similar to creatine whereas a phosphocreatine derivative, PCr-Mg-CPLX, resulted in partial activity. SLC6A8 mutants displayed no electrogenic activity with all Cr analogs tested in X. laevis oocytes. Although the mutations altered various domains of SLC6A8 Cr uptake and electrogenic properties were completely inhibited and could not be dissociated. Besides the metabolic functions of Cr, the loss of SLC6A8 electrogenic activity, demonstrated here for the first time, may also play a role in the altered brain functions of the patients.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Mutación , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Niño , Preescolar , Creatina/genética , Creatina/metabolismo , Fenómenos Electrofisiológicos , Fibroblastos/metabolismo , Genotipo , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oocitos/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
Mol Microbiol ; 76(6): 1591-606, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20487273

RESUMEN

The human malaria parasite Plasmodium falciparum is capable of adapting to vastly different extracellular Ca(2+) environments while maintaining tight control of its intracellular Ca(2+) concentration. The mechanisms underpinning Ca(2+) homeostasis in this important pathogen are only partly understood. Here we have functionally expressed the putative Ca(2+)/H(+) antiporter PfCHA in Xenopus laevis oocytes. Our data suggest that PfCHA mediates H(+)-coupled Ca(2+) and Mn(2+) exchange. The apparent dissociation constant K(M) for Ca(2+) of 2.2 +/- 0.7 mM and the maximal velocity V(max) of 0.6 +/- 0.1 nmol per oocyte per hour are consistent with PfCHA being a low-affinity high-capacity Ca(2+) carrier. In the parasite, PfCHA was found to localize to the mitochondrion. Physiological studies conducted with live parasitized erythrocytes, and using Fluo-4 and Rhod-2 to monitor cytoplasmic and mitochondrial Ca(2+) dynamics, suggest that the mitochondrion serves as a dynamic Ca(2+) store and that PfCHA functions as a Ca(2+) efflux system expelling excess Ca(2+) from the mitochondrion. PfCHA lacks appreciable homologies to the human mitochondrial Ca(2+)/H(+) exchanger and might represent an evolutionary divergent class of mitochondrial cation antiporter, which, in turn, might provide novel opportunities for intervention.


Asunto(s)
Antiportadores/metabolismo , Cationes Bivalentes/metabolismo , Proteínas Mitocondriales/metabolismo , Plasmodium falciparum/metabolismo , Protones , Proteínas Protozoarias/metabolismo , Animales , Antiportadores/genética , Calcio/metabolismo , Expresión Génica , Cinética , Manganeso/metabolismo , Mitocondrias/química , Proteínas Mitocondriales/genética , Modelos Biológicos , Modelos Moleculares , Oocitos , Plasmodium falciparum/genética , Unión Proteica , Proteínas Protozoarias/genética , Xenopus laevis
8.
N Engl J Med ; 359(11): 1128-35, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18784102

RESUMEN

Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans.


Asunto(s)
Desmineralización Ósea Patológica/genética , Cálculos Renales/genética , Nefrolitiasis/genética , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Adulto , Animales , Transporte Biológico/genética , Desmineralización Ósea Patológica/metabolismo , Desmineralización Ósea Patológica/fisiopatología , Células Cultivadas , AMP Cíclico/biosíntesis , AMP Cíclico/orina , Análisis Mutacional de ADN , Femenino , Tasa de Filtración Glomerular/genética , Humanos , Hipercalciuria/genética , Riñón/citología , Riñón/metabolismo , Cálculos Renales/metabolismo , Cálculos Renales/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Mutación Missense , Nefrolitiasis/metabolismo , Zarigüeyas , Hormona Paratiroidea/sangre , Fosfatos/sangre
9.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166227

RESUMEN

Idiopathic nephrotic syndrome (INS) is characterized by proteinuria and renal sodium retention leading to edema. This sodium retention is usually attributed to epithelial sodium channel (ENaC) activation after plasma aldosterone increase. However, most nephrotic patients show normal aldosterone levels. Using a corticosteroid-clamped (CC) rat model of INS (CC-PAN), we showed that the observed electrogenic and amiloride-sensitive Na retention could not be attributed to ENaC. We then identified a truncated variant of acid-sensing ion channel 2b (ASIC2b) that induced sustained acid-stimulated sodium currents when coexpressed with ASIC2a. Interestingly, CC-PAN nephrotic ASIC2b-null rats did not develop sodium retention. We finally showed that the expression of the truncated ASIC2b in the kidney was dependent on the presence of albumin in the tubule lumen and activation of ERK in renal cells. Finally, the presence of ASIC2 mRNA was also detected in kidney biopsies from patients with INS but not in any of the patients with other renal diseases. We have therefore identified a variant of ASIC2b responsible for the renal Na retention in the pathological context of INS.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Riñón , Sistema de Señalización de MAP Quinasas , Síndrome Nefrótico , Canales de Sodio/metabolismo , Sodio , Albúminas/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Homeostasis , Riñón/metabolismo , Riñón/patología , Síndrome Nefrótico/sangre , Síndrome Nefrótico/metabolismo , Proteinuria/metabolismo , Ratas , Sodio/sangre , Sodio/metabolismo
10.
N Engl J Med ; 347(13): 983-91, 2002 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12324554

RESUMEN

BACKGROUND: Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. METHODS: We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. RESULTS: Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. CONCLUSIONS: Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization.


Asunto(s)
Hipofosfatemia/genética , Cálculos Renales/genética , Osteoporosis/genética , Mutación Puntual , Simportadores/genética , Adulto , Animales , Femenino , Heterocigoto , Humanos , Hipofosfatemia/complicaciones , Riñón/metabolismo , Cálculos Renales/complicaciones , Masculino , Persona de Mediana Edad , Oocitos/metabolismo , Osteoporosis/complicaciones , Técnicas de Placa-Clamp , Fosfatos/metabolismo , Fosfatos/farmacocinética , Proteínas Cotransportadoras de Sodio-Fosfato , Simportadores/metabolismo , Xenopus laevis
11.
Sci Rep ; 7(1): 7249, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775266

RESUMEN

The human ClC-Kb channel plays a key role in exporting chloride ions from the cytosol and is known to be involved in Bartter syndrome type 3 when its permeation capacity is decreased. The ClC-Kb channel has been recently proposed as a potential therapeutic target to treat hypertension. In order to gain new insights into the sequence-structure-function relationships of this channel, to investigate possible impacts of amino-acid substitutions, and to design novel inhibitors, we first built a structural model of the human ClC-Kb channel using comparative modeling strategies. We combined in silico and in vitro techniques to analyze amino acids involved in the chloride ion pathway as well as to rationalize the possible role of several clinically observed mutations leading to the Bartter syndrome type 3. Virtual screening and drug repositioning computations were then carried out. We identified six novel molecules, including 2 approved drugs, diflusinal and loperamide, with Kd values in the low micromolar range, that block the human ClC-Kb channel and that could be used as starting point to design novel chemical probes for this potential therapeutic target.


Asunto(s)
Canales de Cloruro/química , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Secuencia de Aminoácidos , Animales , Bovinos , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/química , Cloruros/metabolismo , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Estructura Molecular , Mutación , Conformación Proteica
12.
J Mol Biol ; 428(14): 2898-915, 2016 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-27241308

RESUMEN

Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCß and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.


Asunto(s)
Canales de Cloruro/genética , Crotalus/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fosfolipasas A2/genética , Venenos de Serpiente/genética , Animales , Línea Celular Tumoral , AMP Cíclico/genética , Femenino , Células HeLa , Humanos , Activación del Canal Iónico/genética , Cinética , Masculino , Ratones , Simulación del Acoplamiento Molecular/métodos , Mutación/genética , Oocitos/metabolismo , Unión Proteica/genética , Eliminación de Secuencia/genética , Xenopus laevis/genética
13.
PLoS One ; 7(4): e34764, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22506049

RESUMEN

BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.


Asunto(s)
Mutación , Hormona Paratiroidea/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Anciano , Animales , Línea Celular Tumoral , Células Cultivadas , AMP Cíclico/metabolismo , Células HeLa , Humanos , Túbulos Renales Proximales/metabolismo , Oocitos/metabolismo , Zarigüeyas , Proteínas de Transporte de Fosfato/biosíntesis , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
PLoS One ; 7(4): e34879, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22514683

RESUMEN

BACKGROUND: A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes. METHODOLOGY/FINDINGS: NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression. CONCLUSION/PERSPECTIVES: We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Oocitos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Femenino , Unión Proteica
15.
Pflugers Arch ; 450(3): 155-67, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15856280

RESUMEN

The erythroid Rh-associated glycoprotein (RhAG) is strictly required for the expression of the Rh blood group antigens carried by Rh (D,CE) proteins. A biological function for RhAG in ammonium transport has been suggested by its ability to improve survival of an ammonium-uptake-deficient yeast. We investigated the function of RhAG by studying the entry of NH3/NH4+ in HeLa cells transiently expressing the green fluorescent protein (GFP)-RhAG fusion protein and using a fluorescent proton probe to measure intracellular pH (pHi). Under experimental conditions that reduce the intrinsic Na/H exchanger activity, exposure of control cells to a 10 mM NH4Cl- containing solution induces the classic pHi response profile of cells having a high permeability to NH3 (PNH3) but relatively low permeability to NH4+ (PNH4). In contrast, under the same conditions, the pHi profile of cells expressing RhAG clearly indicated an increased PNH4, as evidenced by secondary reacidification during NH4Cl exposure and a pHi undershoot below the initial resting value upon its removal. Measurements of pHi during methylammonium exposure showed that RhAG expression enhances the influx of both the unprotonated and ionic forms of methylammonium. Using a mathematical model to adjust passive permeabilities for a fit to the pHi profiles, we found that RhAG expression resulted in a threefold increase of PNH4 and a twofold increase of PNH3. Our results are the first evidence that the human erythroid RhAG increases the transport of both NH3 and NH4+.


Asunto(s)
Amoníaco/metabolismo , Proteínas Sanguíneas/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Bario/farmacología , Transporte Biológico/fisiología , Cloruros/farmacología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Ouabaína/farmacología , Proteínas Recombinantes de Fusión/biosíntesis , Intercambiadores de Sodio-Hidrógeno/metabolismo
16.
J Biol Chem ; 279(16): 15975-83, 2004 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-14761968

RESUMEN

Renal ammonium (NH3 + NH4+) transport is a key process for body acid-base balance. It is well known that several ionic transport systems allow NH4+ transmembrane translocation without high specificity NH4+, but it is still debated whether NH3, and more generally, gas, may be transported by transmembrane proteins. The human Rh glycoproteins have been proposed to mediate ammonium transport. Transport of NH4+ and/or NH3 by the epithelial Rh C glycoprotein (RhCG) may be of physiological importance in renal ammonium excretion because RhCG is mainly expressed in the distal nephron. However, RhCG function is not yet established. In the present study, we search for ammonium transport by RhCG. RhCG function was investigated by electrophysiological approaches in RhCG-expressing Xenopus laevis oocytes. In the submillimolar concentration range, NH4Cl exposure induced inward currents (IAM) in voltage-clamped RhCG-expressing cells, but not in control cells. At physiological extracellular pH (pHo) = 7.5, the amplitude of IAM increased with NH4Cl concentration and membrane hyperpolarization. The amplitude of IAM was independent of external Na+ or K+ concentrations but was enhanced by alkaline pHo and decreased by acid pHo. The apparent affinity of RhCG for NH4+ was affected by NH3 concentration and by changing pHo, whereas the apparent affinity for NH3 was unchanged by pHo, consistent with direct NH3 involvement in RhCG function. The enhancement of methylammonium-induced current by NH3 further supported this conclusion. Exposure to 500 microm NH4Cl induced a biphasic intracellular pH change in RhCG-expressing oocytes, consistent with both NH3 and NH4+ enhanced influx. Our results support the hypothesis of a specific role for RhCG in NH3 and NH4+ transport.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Glicoproteínas de Membrana/fisiología , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/fisiología , Riñón/fisiología , Potenciales de la Membrana/fisiología , Compuestos de Amonio Cuaternario/metabolismo
17.
J Biol Chem ; 279(38): 39438-46, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15258157

RESUMEN

A large body of genetic, reverse genetic, and epidemiological data has linked chloroquine-resistant malaria to polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum. To investigate the biological function of the chloroquine resistance transporter, PfCRT, as well as its role in chloroquine resistance, we functionally expressed this protein in Xenopus laevis oocytes. Our data show that PfCRT-expressing oocytes exhibit a depolarized resting membrane potential and a higher intracellular pH compared with control oocytes. Pharmacological and electrophysiological studies link the higher intracellular pH to an enhanced amiloride-sensitive H(+) extrusion and the low membrane potential to an activated nonselective cation conductance. The finding that both properties are independent of each other, together with the fact that they are endogenously present in X. laevis oocytes, supports a model in which PfCRT activates transport systems. Our data suggest that PfCRT plays a role as a direct or indirect activator or modulator of other transporters.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Antimaláricos , Cationes/metabolismo , Cloroquina , Resistencia a Medicamentos , Femenino , Expresión Génica , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana , Oocitos/fisiología , Plasmodium falciparum , Protones , Proteínas Protozoarias , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA