Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654912

RESUMEN

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
2.
Hum Genet ; 140(2): 299-307, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32666166

RESUMEN

The genomes of present-day humans outside Africa originated almost entirely from a single out-migration ~ 50,000-70,000 years ago, followed by mixture with Neanderthals contributing ~ 2% to all non-Africans. However, the details of this initial migration remain poorly understood because no ancient DNA analyses are available from this key time period, and interpretation of present-day autosomal data is complicated due to subsequent population movements/reshaping. One locus, however, does retain male-specific information from this early period: the Y chromosome, where a detailed calibrated phylogeny has been constructed. Three present-day Y lineages were carried by the initial migration: the rare haplogroup D, the moderately rare C, and the very common FT lineage which now dominates most non-African populations. Here, we show that phylogenetic analyses of haplogroup C, D and FT sequences, including very rare deep-rooting lineages, together with phylogeographic analyses of ancient and present-day non-African Y chromosomes, all point to East/Southeast Asia as the origin 50,000-55,000 years ago of all known surviving non-African male lineages (apart from recent migrants). This observation contrasts with the expectation of a West Eurasian origin predicted by a simple model of expansion from a source near Africa, and can be interpreted as resulting from extensive genetic drift in the initial population or replacement of early western Y lineages from the east, thus informing and constraining models of the initial expansion.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , África , ADN/genética , Emigración e Inmigración , Genética de Población/métodos , Genoma Humano/genética , Haplotipos/genética , Humanos , Masculino , Filogenia , Filogeografía/métodos
3.
J Hum Genet ; 66(7): 707-716, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33510364

RESUMEN

Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs. High phylogenetic resolution within haplogroup C2a1a2-M48 was achieved by using additional SNPs. Three lines of evidence indicate that the Alimuly and Baiuly clans (but not the Zhetiru clan) have a common founder placed 700 ± 200 years back by the STR data and 500 ± 200 years back by the sequencing data. This supports traditional genealogy claims about the descent of these clans from Emir Alau, who lived 650 years ago and whose lineage might be carried by two-thirds of Western Kazakhs. There is accumulation of specific haplogroups in the subclans representing other lineages, confirming that the clan structure corresponds with the paternal genetic structure of the steppe population.


Asunto(s)
Cromosomas Humanos Y/genética , Genealogía y Heráldica , Haplotipos/genética , Filogenia , Efecto Fundador , Genotipo , Humanos , Kazajstán/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética
4.
Genomics ; 112(1): 442-458, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902755

RESUMEN

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.


Asunto(s)
Variación Genética , Adulto , Enfermedades Transmisibles/genética , Demografía , Haplotipos , Humanos , Mutación INDEL , Farmacogenética , Fenotipo , Filogeografía , Polimorfismo de Nucleótido Simple , Federación de Rusia/etnología , Selección Genética , Secuenciación Completa del Genoma
5.
BMC Genomics ; 21(Suppl 7): 527, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912208

RESUMEN

BACKGROUND: Predicting the eye and hair color from genotype became an established and widely used tool in forensic genetics, as well as in studies of ancient human populations. However, the accuracy of this tool has been verified on the West and Central Europeans only, while populations from border regions between Europe and Asia (like Caucasus and Ural) also carry the light pigmentation phenotypes. RESULTS: We phenotyped 286 samples collected across North Eurasia, genotyped them by the standard HIrisPlex-S markers and found that predictive power in Caucasus/Ural/West Siberian populations is reasonable but lower than that in West Europeans. As these populations have genetic ancestries different from that of West Europeans, we hypothesized they may carry a somewhat different allele spectrum. Thus, for all samples we performed the exome sequencing additionally enriched with the 53 genes and intergenic regions known to be associated with the eye/hair color. Our association analysis replicated the importance of the key previously known SNPs but also identified five new markers whose eye color prediction power for the studied populations is compatible with the two major previously well-known SNPs. Four out of these five SNPs lie within the HERС2 gene and the fifth in the intergenic region. These SNPs are found at high frequencies in most studied populations. The released dataset of exomes from Russian populations can be further used for population genetic and medical genetic studies. CONCLUSIONS: This study demonstrated that precision of the established systems for eye/hair color prediction from a genotype is slightly lower for the populations from the border regions between Europe and Asia that for the West Europeans. However, this precision can be improved if some newly revealed predictive SNPs are added into the panel. We discuss that the replication of these pigmentation-associated SNPs on the independent North Eurasian sample is needed in the future studies.


Asunto(s)
ADN , Color del Cabello , Asia , Europa (Continente) , Color del Ojo/genética , Humanos , Polimorfismo de Nucleótido Simple , Federación de Rusia
6.
BMC Genet ; 21(Suppl 1): 87, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092538

RESUMEN

BACKGROUND: The majority of the Kazakhs from South Kazakhstan belongs to the 12 clans of the Senior Zhuz. According to traditional genealogy, nine of these clans have a common ancestor and constitute the Uissun tribe. There are three main hypotheses of the clans' origin, namely, origin from early Wusuns, from Niru'un Mongols, or from Darligin Mongols. We genotyped 490 samples of South Kazakhs by 35 Y-chromosomal SNPs (single nucleotide polymorphism) and 17 STRs (short tandem repeat). Additionally, 133 samples from citizen science projects were included into the study. RESULTS: We found that three Uissun clans have unique Y-chromosomal profiles, but the remaining six Uissun clans and one non-Uissun clan share a common paternal gene pool. They share a high frequency (> 40%) of the C2*-ST haplogroup (marked by the SNP F3796), which is associated with the early Niru'un Mongols. Phylogenetic analysis of this haplogroup carried out on 743 individuals from 25 populations of Eurasia has revealed a set of haplotype clusters, three of which contain the Uissun haplotypes. The demographic expansion of these clusters dates back to the 13-fourteenth century, coinciding with the time of the Uissun's ancestor Maiky-biy known from historical sources. In addition, it coincides with the expansion period of the Mongol Empire in the Late Middle Ages. A comparison of the results with published aDNA (ancient deoxyribonucleic acid) data and modern Y haplogroups frequencies suggest an origin of Uissuns from Niru'un Mongols rather than from Wusuns or Darligin Mongols. CONCLUSIONS: The Y-chromosomal variation in South Kazakh clans indicates their common origin in 13th-14th centuries AD, in agreement with the traditional genealogy. Though genetically there were at least three ancestral lineages instead of the traditional single ancestor. The majority of the Y-chromosomal lineages of South Kazakhstan was brought by the migration of the population related to the medieval Niru'un Mongols.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Genética de Población , Etnicidad/genética , Pool de Genes , Genotipo , Haplotipos , Humanos , Kazajstán , Masculino , Repeticiones de Microsatélite , Mongolia , Filogenia , Polimorfismo de Nucleótido Simple
7.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24256729

RESUMEN

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Asunto(s)
Pueblo Asiatico/genética , Genoma Humano/genética , Indígenas Norteamericanos/etnología , Indígenas Norteamericanos/genética , Filogenia , Población Blanca/genética , Animales , Asia/etnología , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración , Flujo Génico/genética , Genoma Mitocondrial/genética , Haplotipos/genética , Humanos , Indígenas Norteamericanos/clasificación , Masculino , Filogeografía , Siberia/etnología , Esqueleto
8.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25230663

RESUMEN

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Asunto(s)
Genoma Humano/genética , Población Blanca/clasificación , Población Blanca/genética , Agricultura/historia , Asia/etnología , Europa (Continente) , Historia Antigua , Humanos , Dinámica Poblacional , Análisis de Componente Principal , Recursos Humanos
9.
Am J Hum Genet ; 99(1): 163-73, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27392075

RESUMEN

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.


Asunto(s)
Cromosomas Humanos Y/genética , Haplotipos/genética , Lenguaje , Asia , Europa (Continente) , Humanos , Filogeografía , Factores de Tiempo
10.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25898006

RESUMEN

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Asunto(s)
Cromosomas/genética , Flujo Génico , Genética de Población , Migración Humana/historia , Asia , Pueblo Asiatico/genética , Pueblo Asiatico/historia , China , Cromosomas Humanos Y/genética , Etnicidad/genética , Etnicidad/historia , Europa (Continente) , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia Medieval , Humanos , Lenguaje , Medio Oriente , Mongolia , Polimorfismo de Nucleótido Simple/genética , Siberia
11.
BMC Evol Biol ; 17(Suppl 1): 18, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28251872

RESUMEN

BACKGROUND: The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. RESULTS: We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3-4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. CONCLUSIONS: This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations.


Asunto(s)
Cromosomas Humanos Y , Genética de Población , Asia , Colaboración de las Masas , Etnicidad/genética , Europa (Continente) , Ligamiento Genético , Haplotipos , Humanos , Masculino , Filogeografía
12.
J Hum Genet ; 62(8): 789-795, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28405014

RESUMEN

Although mutations in the GJB2 gene sequence make up the majority of variants causing autosomal-recessive non-syndromic hearing loss, few large deletions have been shown to contribute to DFNB1 deafness. Currently, genetic testing for DFNB1 hearing loss includes GJB2 sequencing and DFNB1 deletion analysis for two common large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854). Here, we report frequency in Russia, clinical significance and evolutionary origins of a 101 kb deletion, del(GJB2-D13S175), recently identified by us. In multiethnic cohort of 1104 unrelated hearing loss patients with biallelic mutations at the DFNB1 locus, the del(GJB2-D13S175) allele frequency of up to 0.5% (11/2208) was determined and this allele was shown to be predominantly associated with profound sensorineural hearing loss. Additionally, eight previously unpublished GJB2 mutations were described in this study. All patients carrying del(GJB2-D13S175) were of the Ingush ancestry. Among normal hearing individuals, del(GJB2-D13S175) was observed in Russian Republic of Ingushetia with a carrier rate of ~1% (2/241). Analysis of haplotypes associated with the deletion revealed a common founder in the Ingushes, with age of the deletion being ~3000 years old. Since del(GJB2-D13S175) was missed by standard methods of GJB2 analysis, del(GJB2-D13S175) detection has been added to our routine testing strategy for DFNB1 hearing loss.


Asunto(s)
Conexinas/genética , Efecto Fundador , Pérdida Auditiva/genética , Mutación , Eliminación de Secuencia , Niño , Preescolar , Estudios de Cohortes , Conexina 26 , Femenino , Frecuencia de los Genes , Pruebas Genéticas , Genotipo , Pérdida Auditiva/epidemiología , Humanos , Masculino , Federación de Rusia/epidemiología
13.
BMC Genet ; 18(Suppl 1): 110, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297395

RESUMEN

BACKGROUND: The history of human populations occupying the plains and mountain ridges separating Europe from Asia has been eventful, as these natural obstacles were crossed westward by multiple waves of Turkic and Uralic-speaking migrants as well as eastward by Europeans. Unfortunately, the material records of history of this region are not dense enough to reconstruct details of population history. These considerations stimulate growing interest to obtain a genetic picture of the demographic history of migrations and admixture in Northern Eurasia. RESULTS: We genotyped and analyzed 1076 individuals from 30 populations with geographical coverage spanning from Baltic Sea to Baikal Lake. Our dense sampling allowed us to describe in detail the population structure, provide insight into genomic history of numerous European and Asian populations, and significantly increase quantity of genetic data available for modern populations in region of North Eurasia. Our study doubles the amount of genome-wide profiles available for this region. We detected unusually high amount of shared identical-by-descent (IBD) genomic segments between several Siberian populations, such as Khanty and Ket, providing evidence of genetic relatedness across vast geographic distances and between speakers of different language families. Additionally, we observed excessive IBD sharing between Khanty and Bashkir, a group of Turkic speakers from Southern Urals region. While adding some weight to the "Finno-Ugric" origin of Bashkir, our studies highlighted that the Bashkir genepool lacks the main "core", being a multi-layered amalgamation of Turkic, Ugric, Finnish and Indo-European contributions, which points at intricacy of genetic interface between Turkic and Uralic populations. Comparison of the genetic structure of Siberian ethnicities and the geography of the region they inhabit point at existence of the "Great Siberian Vortex" directing genetic exchanges in populations across the Siberian part of Asia. Slavic speakers of Eastern Europe are, in general, very similar in their genetic composition. Ukrainians, Belarusians and Russians have almost identical proportions of Caucasus and Northern European components and have virtually no Asian influence. We capitalized on wide geographic span of our sampling to address intriguing question about the place of origin of Russian Starovers, an enigmatic Eastern Orthodox Old Believers religious group relocated to Siberia in seventeenth century. A comparative reAdmix analysis, complemented by IBD sharing, placed their roots in the region of the Northern European Plain, occupied by North Russians and Finno-Ugric Komi and Karelian people. Russians from Novosibirsk and Russian Starover exhibit ancestral proportions close to that of European Eastern Slavs, however, they also include between five to 10 % of Central Siberian ancestry, not present at this level in their European counterparts. CONCLUSIONS: Our project has patched the hole in the genetic map of Eurasia: we demonstrated complexity of genetic structure of Northern Eurasians, existence of East-West and North-South genetic gradients, and assessed different inputs of ancient populations into modern populations.


Asunto(s)
Emigración e Inmigración/historia , Etnicidad/genética , Genética de Población , Algoritmos , Asia , ADN , Conjuntos de Datos como Asunto , Europa (Continente) , Femenino , Variación Genética , Técnicas de Genotipaje , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Masculino , Federación de Rusia
14.
Nature ; 466(7303): 238-42, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20531471

RESUMEN

Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical and cultural traditions. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa and Asia, in what is termed the Jewish Diaspora. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people. Although many genetic studies have shed light on Jewish origins and on diseases prevalent among Jewish communities, including studies focusing on uniparentally and biparentally inherited markers, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbours have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not previously been reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and north Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight subcluster that overlies Druze and Cypriot samples but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Indian Jews (Bene Israel and Cochini) cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively, despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.


Asunto(s)
Genoma Humano/genética , Judíos/genética , África del Norte/etnología , Alelos , Asia , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Etiopía/etnología , Europa (Continente) , Genotipo , Geografía , Humanos , India/etnología , Judíos/clasificación , Medio Oriente/etnología , Filogenia , Análisis de Componente Principal
15.
PLoS Genet ; 9(2): e1003296, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23459685

RESUMEN

North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.


Asunto(s)
ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Genoma Mitocondrial , Arqueología , Europa (Continente) , Genética de Población , Genotipo , Haplotipos , Humanos , Dinámica Poblacional , Federación de Rusia , Países Escandinavos y Nórdicos , Siberia , Población Blanca/genética
16.
Mol Biol Evol ; 29(1): 25-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21890475

RESUMEN

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Asunto(s)
Evolución Molecular , Densidad de Población , Grupos Raciales/genética , Grupos Raciales/historia , Recombinación Genética , África , Asia , Bases de Datos Genéticas , Europa (Continente) , Historia Antigua , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estadísticas no Paramétricas
17.
Am J Hum Genet ; 86(4): 611-20, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20346436

RESUMEN

The study of recently admixed populations provides unique tools for understanding recent population dynamics, socio-cultural factors associated with the founding of emerging populations, and the genetic basis of disease by means of admixture mapping. Historical records and recent autosomal data indicate that the South African Coloured population forms a unique highly admixed population, resulting from the encounter of different peoples from Africa, Europe, and Asia. However, little is known about the mode by which this admixed population was recently founded. Here we show, through detailed phylogeographic analyses of mitochondrial DNA and Y-chromosome variation in a large sample of South African Coloured individuals, that this population derives from at least five different parental populations (Khoisan, Bantus, Europeans, Indians, and Southeast Asians), who have differently contributed to the foundation of the South African Coloured. In addition, our analyses reveal extraordinarily unbalanced gender-specific contributions of the various population genetic components, the most striking being the massive maternal contribution of Khoisan peoples (more than 60%) and the almost negligible maternal contribution of Europeans with respect to their paternal counterparts. The overall picture of gender-biased admixture depicted in this study indicates that the modern South African Coloured population results mainly from the early encounter of European and African males with autochthonous Khoisan females of the Cape of Good Hope around 350 years ago.


Asunto(s)
Población Negra/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Genética de Población , Polimorfismo de Nucleótido Simple/genética , Femenino , Ligamiento Genético , Humanos , Masculino , Madres , Factores Sexuales
18.
PLoS Biol ; 8(11): e1000536, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085689

RESUMEN

In Europe, the Neolithic transition (8,000-4,000 B.C.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major genetic input from this area during the advent of farming in Europe. However, the LBK population also showed unique genetic features including a clearly distinct distribution of mitochondrial haplogroup frequencies, confirming that major demographic events continued to take place in Europe after the early Neolithic.


Asunto(s)
Agricultura , ADN Mitocondrial/genética , Emigración e Inmigración , Fósiles , Europa (Continente) , Humanos
19.
Hum Biol ; 85(6): 859-900, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25079123

RESUMEN

The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.


Asunto(s)
Judíos/genética , Regiones de la Antigüedad/etnología , Europa (Continente)/etnología , Femenino , Genética de Población/métodos , Estudio de Asociación del Genoma Completo , Historia Antigua , Historia Medieval , Humanos , Judíos/historia , Masculino , Medio Oriente/etnología , Polimorfismo de Nucleótido Simple/genética
20.
Am J Phys Anthropol ; 152(4): 543-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24122717

RESUMEN

The area of what is now the Ukraine has been the arena of large-scale demographic processes that may have left their traces in the contemporary gene pool of Ukrainians. In this study, we present new mitochondrial DNA data for 607 Ukrainians (hypervariable segment I sequences and coding region polymorphisms). To study the maternal affinities of Ukrainians at the level of separate mitochondrial haplotypes, we apply an original technique, the haplotype co-occurrence analysis. About 20% of the Ukrainian maternal gene pool is represented by lineages highly specific to Ukrainians, but is scarcely found in other populations. About 9% of Ukrainian mtDNA lineages are typical for peoples of the Volga region. We also identified minor gene pool strata (1.6-3.3%), each of which is common in Lithuanians, Estonians, Saami, Nenets, Cornish, and the populations of the North Caucasus.


Asunto(s)
ADN Mitocondrial/genética , Población Blanca , Antropología Física , Genética de Población , Haplotipos/genética , Humanos , Filogeografía , Ucrania , Población Blanca/clasificación , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA