Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Euro Surveill ; 28(26)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37382886

RESUMEN

BackgroundArthropod vectors such as ticks, mosquitoes, sandflies and biting midges are of public and veterinary health significance because of the pathogens they can transmit. Understanding their distributions is a key means of assessing risk. VectorNet maps their distribution in the EU and surrounding areas.AimWe aim to describe the methodology underlying VectorNet maps, encourage standardisation and evaluate output.Methods: Vector distribution and surveillance activity data have been collected since 2010 from a combination of literature searches, field-survey data by entomologist volunteers via a network facilitated for each participating country and expert validation. Data were collated by VectorNet members and extensively validated during data entry and mapping processes.ResultsAs of 2021, the VectorNet archive consisted of ca 475,000 records relating to > 330 species. Maps for 42 species are routinely produced online at subnational administrative unit resolution. On VectorNet maps, there are relatively few areas where surveillance has been recorded but there are no distribution data. Comparison with other continental databases, namely the Global Biodiversity Information Facility and VectorBase show that VectorNet has 5-10 times as many records overall, although three species are better represented in the other databases. In addition, VectorNet maps show where species are absent. VectorNet's impact as assessed by citations (ca 60 per year) and web statistics (58,000 views) is substantial and its maps are widely used as reference material by professionals and the public.ConclusionVectorNet maps are the pre-eminent source of rigorously validated arthropod vector maps for Europe and its surrounding areas.


Asunto(s)
Artrópodos , Humanos , Animales , Mosquitos Vectores , Vectores de Enfermedades , Vectores Artrópodos , Europa (Continente)/epidemiología
2.
Euro Surveill ; 21(31)2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27526394

RESUMEN

This study aimed at estimating, in a prospective scenario, the potential economic impact of a possible epidemic of WNV infection in Belgium, based on 2012 values for the equine and human health sectors, in order to increase preparedness and help decision-makers. Modelling of risk areas, based on the habitat suitable for Culex pipiens, the main vector of the virus, allowed us to determine equine and human populations at risk. Characteristics of the different clinical forms of the disease based on past epidemics in Europe allowed morbidity among horses and humans to be estimated. The main costs for the equine sector were vaccination and replacement value of dead or euthanised horses. The choice of the vaccination strategy would have important consequences in terms of cost. Vaccination of the country's whole population of horses, based on a worst-case scenario, would cost more than EUR 30 million; for areas at risk, the cost would be around EUR 16-17 million. Regarding the impact on human health, short-term costs and socio-economic losses were estimated for patients who developed the neuroinvasive form of the disease, as no vaccine is available yet for humans. Hospital charges of around EUR 3,600 for a case of West Nile neuroinvasive disease and EUR 4,500 for a case of acute flaccid paralysis would be the major financial consequence of an epidemic of West Nile virus infection in humans in Belgium.


Asunto(s)
Brotes de Enfermedades/economía , Epidemias , Enfermedades de los Caballos/economía , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental/aislamiento & purificación , Crianza de Animales Domésticos/economía , Animales , Bélgica/epidemiología , Culex/virología , Brotes de Enfermedades/veterinaria , Femenino , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Caballos , Humanos , Masculino , Estudios Prospectivos , Vacunación/economía , Fiebre del Nilo Occidental/economía , Fiebre del Nilo Occidental/veterinaria
3.
Parasitol Res ; 114(8): 3151-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26002826

RESUMEN

Culicoides biting midges (Diptera: Ceratopogonidae) are important vectors of arboviruses in Africa. Culicoides oxystoma has been recently recorded in the Niayes region of Senegal (West Africa) and its high abundance on horses suggests a potential implication in the transmission of the African horse sickness virus in this region. This species is also suspected to transmit bluetongue virus to imported breeds of sheep. Little information is available on the biology and ecology of Culicoides in Africa. Therefore, understanding the circadian host-seeking activity of this putative vector is of primary importance to assess the risk of the transmission of Culicoides-borne pathogens. To achieve this objective, midges were collected using a sheep-baited trap over two consecutive 24-h periods during four seasons in 2012. A total of 441 Culicoides, belonging to nine species including 418 (94.8%) specimens of C. oxystoma, were collected. C. oxystoma presented a bimodal circadian host-seeking activity at sunrise and sunset in July and was active 3 h after sunrise in April. Daily activity appeared mainly related to time periods. Morning activity increased with the increasing temperature up to about 27 °C and then decreased with the decreasing humidity, suggesting thermal limits for C. oxystoma activity. Evening activity increased with the increasing humidity and the decreasing temperature, comprised between 20 and 27 °C according to seasons. Interestingly, males were more abundant in our sampling sessions, with similar activity periods than females, suggesting potential animal host implication in the facilitation of reproduction. Finally, the low number of C. oxystoma collected render practical vector-control recommendations difficult to provide and highlight the lack of knowledge on the bio-ecology of this species of veterinary interest.


Asunto(s)
Virus de la Enfermedad Equina Africana/fisiología , Virus de la Lengua Azul/fisiología , Ceratopogonidae/fisiología , Ritmo Circadiano/fisiología , Insectos Vectores/fisiología , Animales , Ceratopogonidae/virología , Femenino , Humedad , Insectos Vectores/virología , Masculino , Estaciones del Año , Senegal
4.
BMC Vet Res ; 10: 77, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24685104

RESUMEN

In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have highlighted large knowledge gaps on the biology and ecology of indigenous Culicoides species. With these research gaps in mind, and as a means of assessing what potential disease outbreaks to expect in the future, an international workshop was held in May 2013 at Wageningen University, The Netherlands. It brought together research groups from Belgium, France, Germany, Spain, Switzerland, United Kingdom and The Netherlands, with diverse backgrounds in vector ecology, epidemiology, entomology, virology, animal health, modelling, and genetics. Here, we report on the key findings of this workshop.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/transmisión , Infecciones por Bunyaviridae/transmisión , Ceratopogonidae/virología , Orthobunyavirus/fisiología , Animales , Bovinos/virología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Educación , Europa (Continente) , Ovinos/virología
5.
Mol Ecol ; 22(9): 2456-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23496796

RESUMEN

Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean Europe during the last two decades is a consequence of the recent colonization of the region by Culicoides imicola and linked to climate change. To better understand the mechanism responsible for the northward spread of BT, we tested the hypothesis of a recent colonization of Italy by C. imicola, by obtaining samples from more than 60 localities across Italy, Corsica, Southern France, and Northern Africa (the hypothesized source point for the recent invasion of C. imicola), and by genotyping them with 10 newly identified microsatellite loci. The patterns of genetic variation within and among the sampled populations were characterized and used in a rigorous approximate Bayesian computation framework to compare three competing historical hypotheses related to the arrival and establishment of C. imicola in Italy. The hypothesis of an ancient presence of the insect vector was strongly favoured by this analysis, with an associated P ≥ 99%, suggesting that causes other than the northward range expansion of C. imicola may have supported the emergence of BT in southern Europe. Overall, this study illustrates the potential of molecular genetic markers for exploring the assumed link between climate change and the spread of diseases.


Asunto(s)
Teorema de Bayes , Ceratopogonidae/genética , Cambio Climático , Insectos Vectores/genética , Animales , Virus de la Lengua Azul , Ceratopogonidae/virología , Biología Computacional , Francia/epidemiología , Sitios Genéticos , Marcadores Genéticos , Variación Genética , Genotipo , Insectos Vectores/virología , Italia/epidemiología , Repeticiones de Microsatélite , Ovinos
6.
Vet Res ; 44: 78, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24016237

RESUMEN

Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007-2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de las Cabras/epidemiología , Fiebre del Valle del Rift/veterinaria , Virus de la Fiebre del Valle del Rift/fisiología , Enfermedades de las Ovejas/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Culicidae/virología , Enfermedades de las Cabras/prevención & control , Enfermedades de las Cabras/virología , Cabras , Islas del Oceano Índico/epidemiología , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Ovinos , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/virología
7.
Virus Evol ; 9(2): vead054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719779

RESUMEN

Our knowledge of the diversity of eukaryotic viruses has recently undergone a massive expansion. This diversity could influence host physiology through yet unknown phenomena of potential interest to the fields of health and food production. However, the assembly processes of this diversity remain elusive in the eukaryotic viromes of terrestrial animals. This situation hinders hypothesis-driven tests of virome influence on host physiology. Here, we compare taxonomic diversity between different spatial scales in the eukaryotic virome of the mosquito Culex pipiens. This mosquito is a vector of human pathogens worldwide. The experimental design involved sampling in five countries in Africa and Europe around the Mediterranean Sea and large mosquito numbers to ensure a thorough exploration of virus diversity. A group of viruses was found in all countries. This core group represented a relatively large and diverse fraction of the virome. However, certain core viruses were not shared by all host individuals in a given country, and their infection rates fluctuated between countries and years. Moreover, the distribution of coinfections in individual mosquitoes suggested random co-occurrence of those core viruses. Our results also suggested differences in viromes depending on geography, with viromes tending to cluster depending on the continent. Thus, our results unveil that the overlap in taxonomic diversity can decrease with spatial scale in the eukaryotic virome of C. pipiens. Furthermore, our results show that integrating contrasted spatial scales allows us to identify assembly patterns in the mosquito virome. Such patterns can guide future studies of virome influence on mosquito physiology.

8.
Pathogens ; 11(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631024

RESUMEN

Rift Valley fever (RVF) is a zoonotic disease caused by a virus mainly transmitted by Aedes and Culex mosquitoes. Infection leads to high abortion rates and considerable mortality in domestic livestock. The combination of viral circulation in Egypt and Libya and the existence of unregulated live animal trade routes through endemic areas raise concerns that the virus may spread to other Mediterranean countries, where there are mosquitoes potentially competent for RVF virus (RVFV) transmission. The competence of vectors for a given pathogen can be assessed through laboratory experiments, but results may vary greatly with the study design. This research aims to quantify the competence of five major potential RVFV vectors in the Mediterranean Basin, namely Aedes detritus, Ae. caspius, Ae. vexans, Culex pipiens and Cx. theileri, through a systematic literature review and meta-analysis. We first computed the infection rate, the dissemination rate among infected mosquitoes, the overall dissemination rate, the transmission rate among mosquitoes with a disseminated infection and the overall transmission rate for these five mosquito species. We next assessed the influence of laboratory study designs on the variability of these five parameters. According to experimental results and our analysis, Aedes caspius may be the most competent vector among the five species considered.

9.
PLoS Negl Trop Dis ; 16(11): e0010339, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399500

RESUMEN

Rift Valley fever (RVF) is a zoonotic arbovirosis which has been reported across Africa including the northernmost edge, South West Indian Ocean islands, and the Arabian Peninsula. The virus is responsible for high abortion rates and mortality in young ruminants, with economic impacts in affected countries. To date, RVF epidemiological mechanisms are not fully understood, due to the multiplicity of implicated vertebrate hosts, vectors, and ecosystems. In this context, mathematical models are useful tools to develop our understanding of complex systems, and mechanistic models are particularly suited to data-scarce settings. Here, we performed a systematic review of mechanistic models studying RVF, to explore their diversity and their contribution to the understanding of this disease epidemiology. Researching Pubmed and Scopus databases (October 2021), we eventually selected 48 papers, presenting overall 49 different models with numerical application to RVF. We categorized models as theoretical, applied, or grey, depending on whether they represented a specific geographical context or not, and whether they relied on an extensive use of data. We discussed their contributions to the understanding of RVF epidemiology, and highlighted that theoretical and applied models are used differently yet meet common objectives. Through the examination of model features, we identified research questions left unexplored across scales, such as the role of animal mobility, as well as the relative contributions of host and vector species to transmission. Importantly, we noted a substantial lack of justification when choosing a functional form for the force of infection. Overall, we showed a great diversity in RVF models, leading to important progress in our comprehension of epidemiological mechanisms. To go further, data gaps must be filled, and modelers need to improve their code accessibility.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Femenino , Embarazo , Animales , Ecosistema , Fiebre del Valle del Rift/epidemiología , África , Arabia
10.
Front Public Health ; 10: 809763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444989

RESUMEN

Public and animal health authorities face many challenges in surveillance and control of vector-borne diseases. Those challenges are principally due to the multitude of interactions between vertebrate hosts, pathogens, and vectors in continuously changing environments. VectorNet, a joint project of the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) facilitates risk assessments of VBD threats through the collection, mapping and sharing of distribution data for ticks, mosquitoes, sand flies, and biting midges that are vectors of pathogens of importance to animal and/or human health in Europe. We describe the development and maintenance of this One Health network that celebrated its 10th anniversary in 2020 and the value of its most tangible outputs, the vector distribution maps, that are freely available online and its raw data on request. VectorNet encourages usage of these maps by health professionals and participation, sharing and usage of the raw data by the network and other experts in the science community. For the latter, a more complete technical description of the mapping procedure will be submitted elsewhere.


Asunto(s)
Vectores de Enfermedades , Animales , Europa (Continente)/epidemiología
11.
J Med Entomol ; 48(5): 1076-90, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21936328

RESUMEN

Host-feeding patterns play a key role in the transmission of vector-borne diseases such as West Nile fever, which involves two kinds of vertebrates, birds and mammals. In this study, we propose a theoretical formulation for mosquito host-feeding patterns using three quantities, as follows: the apparent attractiveness/contact probabilities, the conditional host(-feeding) preferences, and the enzootic versus bridge probabilities. Using results from host-baited trap collections, the quantities defined above were assessed for the most abundant mosquito species in the main West Nile virus focus of southern France. We found that host availability is important in determining the efficiency of bridge vectors, and that even ornithophilic mosquitoes like Culex species, classically classified as enzootic vectors, may turn out to be efficient bridge vectors in certain contexts of host abundance. Our developed theoretical framework can easily be adapted and applied to other experimental data and other vector-borne diseases.


Asunto(s)
Enfermedades de las Aves/transmisión , Culicidae/fisiología , Patos , Enfermedades de los Caballos/transmisión , Modelos Biológicos , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/fisiología , Animales , Enfermedades de las Aves/virología , Culex/fisiología , Culicidae/virología , Ecosistema , Conducta Alimentaria , Francia/epidemiología , Enfermedades de los Caballos/virología , Caballos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología
12.
Parasit Vectors ; 14(1): 93, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536057

RESUMEN

BACKGROUND: In the last two decades, recurrent epizootics of bluetongue virus and Schmallenberg virus have been reported in the western Palearctic region. These viruses affect domestic cattle, sheep, goats and wild ruminants and are transmitted by native hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae). Culicoides dispersal is known to be stratified, i.e. due to a combination of dispersal processes occurring actively at short distances and passively or semi-actively at long distances, allowing individuals to jump hundreds of kilometers. METHODS: Here, we aim to identify the environmental factors that promote or limit gene flow of Culicoides obsoletus, an abundant and widespread vector species in Europe, using an innovative framework integrating spatial, population genetics and statistical approaches. A total of 348 individuals were sampled in 46 sites in France and were genotyped using 13 newly designed microsatellite markers. RESULTS: We found low genetic differentiation and a weak population structure for C. obsoletus across the country. Using three complementary inter-individual genetic distances, we did not detect any significant isolation by distance, but did detect significant anisotropic isolation by distance on a north-south axis. We employed a multiple regression on distance matrices approach to investigate the correlation between genetic and environmental distances. Among all the environmental factors that were tested, only cattle density seems to have an impact on C. obsoletus gene flow. CONCLUSIONS: The high dispersal capacity of C. obsoletus over land found in the present study calls for a re-evaluation of the impact of Culicoides on virus dispersal, and highlights the urgent need to better integrate molecular, spatial and statistical information to guide vector-borne disease control.


Asunto(s)
Lengua Azul/transmisión , Infecciones por Bunyaviridae/transmisión , Ceratopogonidae/genética , Ceratopogonidae/virología , Ambiente , Insectos Vectores/virología , Animales , Virus de la Lengua Azul/fisiología , Bovinos/parasitología , Ceratopogonidae/fisiología , Europa (Continente) , Conducta Alimentaria , Femenino , Francia , Flujo Génico , Genotipo , Insectos Vectores/fisiología , Repeticiones de Microsatélite , Orthobunyavirus/fisiología , Dinámica Poblacional , Estaciones del Año
13.
Mol Ecol Resour ; 21(6): 1788-1807, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33713395

RESUMEN

Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.


Asunto(s)
Biblioteca de Genes , Metagenómica , Virus ARN , Viroma , Animales , Genoma Viral , Metagenoma , Virus ARN/genética
14.
Parasitol Res ; 107(3): 731-4, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20512587

RESUMEN

Species recognition and identification are crucial in any biological studies, especially when dealing with insect species involved in pathogen transmission. In recent years, molecular approaches have helped the clarification of systematic schemes and taxonomic status. Kiehl et al. (Parasitol Res 105:331-336, 2009) used molecular data to discuss the taxonomic status of biting midge species in the Palaearctic region. In the present work, the statements that "[Thus] there is no molecular support for the existence of a separate species C. montanus" and "[Therefore] probably C. scoticus should be considered only as a race of C. obsoletus" are discussed.


Asunto(s)
Lengua Azul/epidemiología , Lengua Azul/transmisión , Ceratopogonidae/clasificación , Ceratopogonidae/genética , ADN Espaciador Ribosómico/genética , Insectos Vectores , Animales , Virus de la Lengua Azul , Europa (Continente)/epidemiología , Análisis de Secuencia de ADN , Especificidad de la Especie
15.
Parasit Vectors ; 13(1): 463, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912306

RESUMEN

BACKGROUND: The Culicoides fauna of Algeria has been historically investigated, leading to the description of many new species by Kieffer in the 1920s, Clastrier in the 1950s or Callot in the 1960s and to a comprehensive inventory by Szadziewski in the 1980s. The emergence of bluetongue in the late 1990s enhanced Culicoides collections made in the country over the last two decades, but information remained mostly unpublished. The aim of this study is therefore to provide a comprehensive and updated checklist of Culicoides biting midge species in Algeria. METHODS: The literature (published and grey, in French and in English) from 1920 to date on Culicoides collections in Algeria was collected and analyzed in the light of the current taxonomic and systematic knowledge and methods. Fresh Culicoides material was also analyzed using light/suction trap collections carried out from November 2015 to September 2018 in nine localities of the 'wilayah' of Tiaret (northwestern Algeria). Slide mounted specimens were identified morphologically using the interactive identification key IIKC and original descriptions. Specimens were then compared with non-type material originating from different countries and partly with type material. RESULTS: A total of 13,709 Culicoides, belonging to at least 36 species within 10 subgenera, were examined leading to 10 new records in Algeria, including C. chiopterus, C. dewulfi, C. navaiae, C. grisescens, C. paradoxalis, C. shaklawensis, C. simulator, C. univittatus, C. achrayi and C. picturatus. These new records and all previous records provided by the literature review were discussed. CONCLUSIONS: We propose a Culicoides checklist for the Algerian fauna of 59 valid species, including species mainly with a large Palaearctic distribution and a specific Mediterranean distribution, and only a few species from the Afrotropical region. Among them, several species, mainly of the subgenera Avaritia and Culicoides, are confirmed or probable vectors of arboviruses important in animal health.


Asunto(s)
Ceratopogonidae/clasificación , Insectos Vectores/clasificación , Argelia , Distribución Animal , Animales , Lengua Azul/transmisión , Virus de la Lengua Azul/fisiología , Bovinos , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Ceratopogonidae/anatomía & histología , Ceratopogonidae/fisiología , Lista de Verificación , Femenino , Insectos Vectores/anatomía & histología , Insectos Vectores/fisiología , Masculino
16.
Parasit Vectors ; 13(1): 243, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398143

RESUMEN

BACKGROUND: Within the genus Culicoides (Diptera: Ceratopogonidae), the subgenus Avaritia is of particular interest as it contains a significant number of economically important vector species. Disagreements about the systematic classification of species within this subgenus have resulted in a taxonomic imbroglio. METHODS: A molecular phylogeny of the subgenus Avaritia was conducted to test the existing systematic classification, which is based on phenetic assessment of morphological characters. Three nuclear ribosomal markers, internal transcribed spacer 1 and 2 (ITS1, ITS2), 5.8S, and three mitochondrial markers, cytochrome c oxidase subunit 1 and 2, and cytochrome b (cox1, cox2 and cytb), were obtained for 37 species of the subgenus Avaritia from all six biogeographical regions. Phylogenetic reconstructions using these genes independently and in combination were implemented using Bayesian inference analysis and maximum likelihood methods. RESULTS: Phylogenetic reconstructions gave strong support to several monophyletic groups within the subgenus Avaritia. Both C. actoni and C. pusillus formed a single clade with C. grahamii so their respective groups, the Actoni and Pusillus groups, have been merged with the Grahamii group. Some support was provided for the Boophagus and Jacobsoni groups. A group of species currently placed into the Orientalis group clustered in a clade with poor support. The Obsoletus group was defined as a sister clade to all other Avaritia groups. The clade including the Imicola group was well supported based on phylogenetic criteria. CONCLUSIONS: This phylogenetic study combining five distinct molecular markers has provided meaningful insights into the systematic relationships of Culicoides (Avaritia) and highlighted future directions to continue the study of this subgenus. While the cox2 marker appeared to be useful to investigate closely related species, the 5.8S marker was highly conserved and uninformative. Further investigations including species absent from this work are needed to confirm the proposed systematic scheme. However, this systematic scheme can now serve as a foundation to investigate cryptic species affiliation within the subgenus. We advocate that future studies employ a combination of morphological and molecular analyses.


Asunto(s)
Ceratopogonidae/clasificación , Ceratopogonidae/genética , Filogenia , Animales , Teorema de Bayes , Grupo Citocromo b/genética , ADN Intergénico/genética , Complejo IV de Transporte de Electrones/genética , Geografía , Especificidad de la Especie
17.
Parasit Vectors ; 13(1): 393, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746908

RESUMEN

BACKGROUND: Culicoides biting midges are vectors involved in the biological transmission cycle of important animal diseases such as bluetongue and African horse sickness. In Romania, the first outbreaks of bluetongue were reported in 2014, leading to increased activities within the existing entomological surveillance network. The main goals of the surveillance activities were the establishment of the vector free period in relation to animal trade and the identification of Culicoides species involved in the transmission of the pathogen. This study was conducted on the composition and relative abundance of the species belonging to the genus Culicoides (Diptera: Ceratopogonidae) in certain regions of Romania and provided the opportunity to update the existing checklist of Culicoides species of this country. METHODS: The study was conducted in 33 of the 42 administrative units (counties), including a total of 659 catches, in 102 locations. The collections were carried out with UV blacklight suction traps (OVI type). The collected insects were preserved in 70% ethanol. Morphological insect identification was carried out using a stereomicroscope, according to established identification keys. In ten localities the relative abundance of the cryptic species of the Obsoletus complex was determined by multiplex PCR assay based on the ITS2 segment. The identification of the Culicoides chiopterus (Meigen) species by morphological examination was confirmed by PCR assay based on the ITS1 segment. RESULTS: Eleven species were identified using morphological and PCR tools. The rest of the individuals were separated into five taxa. The species of the Obsoletus complex (grouping Culicoides obsoletus (Meigen) and Culicoides scoticus Downes & Kettle) were the most abundant, accounting for 59% of the total number of captured Culicoides spp. Three of the identified species are mentioned, according to our knowledge, for the first time in Romania: Culicoides newsteadi Austen, Culicoides flavipulicaris Dzhafarov and Culicoides bysta Sarvasová, Kocisová, Candolfi & Mathieu. CONCLUSIONS: Our study demonstrates that the Culicoides species most commonly cited as being involved in the transmission of arboviruses in Europe (i.e. bluetongue and Schmallenberg viruses) make up a high proportion of adult Culicoides trapped in Romania.


Asunto(s)
Ceratopogonidae/clasificación , Enfermedad Equina Africana/transmisión , Animales , Lengua Azul/transmisión , Insectos Vectores/clasificación , Rumanía
19.
Parasit Vectors ; 13(1): 265, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434592

RESUMEN

BACKGROUND: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. METHODS: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. RESULTS: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. CONCLUSIONS: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.


Asunto(s)
Ceratopogonidae/clasificación , Variación Genética , Insectos Vectores/clasificación , Filogenia , Animales , Ceratopogonidae/virología , Ciclooxigenasa 1/genética , Código de Barras del ADN Taxonómico , Europa (Continente) , Femenino , Geografía , Insectos Vectores/virología , Ganado/virología , Análisis de Secuencia de ADN
20.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295627

RESUMEN

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Asunto(s)
Ceratopogonidae , Aprendizaje Automático , Dinámica Poblacional , Animales , Ceratopogonidae/virología , Clima , Ecosistema , Europa (Continente) , Granjas , Insectos Vectores/virología , Modelos Teóricos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA