Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 50(1): 29-42, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23434372

RESUMEN

Autophagy is an evolutionarily conserved membrane trafficking process. Induction of autophagy in response to nutrient limitation or cellular stress occurs by similar mechanisms in organisms from yeast to mammals. Unlike yeast, metazoan cells rely more on growth factor signaling for a wide variety of cellular activities including nutrient uptake. How growth factor availability regulates autophagy is poorly understood. Here we show that, upon growth factor limitation, the p110ß catalytic subunit of the class IA phosphoinositide 3-kinases (PI3Ks) dissociates from growth factor receptor complexes and increases its interaction with the small GTPase Rab5. This p110ß-Rab5 association maintains Rab5 in its guanosine triphosphate (GTP)-bound state and enhances the Rab5-Vps34 interaction that promotes autophagy. p110ß mutants that fail to interact with Rab5 are defective in autophagy promotion. Hence, in mammalian cells, p110ß acts as a molecular sensor for growth factor availability and induces autophagy by activating a Rab5-mediated signaling cascade.


Asunto(s)
Autofagia , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Transfección
2.
Circ Res ; 116(1): 127-37, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25552692

RESUMEN

Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.


Asunto(s)
Sistema de Conducción Cardíaco/fisiología , Canales Iónicos/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/fisiología , Potenciales de Acción/fisiología , Animales , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología
3.
J Cardiovasc Pharmacol ; 69(4): 198-211, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28376509

RESUMEN

Receptors that activate the heterotrimeric G protein Gαq are thought to play a role in the development of heart failure. Dysregulation of autophagy occurs in some pathological cardiac conditions including heart failure, but whether Gαq is involved in this process is unknown. We used a cardiomyocyte-specific transgenic mouse model of inducible Gαq activation (termed GαqQ209L) to address this question. After 7 days of Gαq activation, GαqQ209L hearts contained more autophagic vacuoles than wild type hearts. Increased levels of proteins involved in autophagy, especially p62 and LC3-II, were also seen. LysoTracker staining and western blotting showed that the number and size of lysosomes and lysosomal protein levels were increased in GαqQ209L hearts, indicating enhanced lysosomal degradation activity. Importantly, an autophagic flux assay measuring LC3-II turnover in isolated adult cardiomyocytes indicated that autophagic activity is enhanced in GαqQ209L hearts. GαqQ209L hearts exhibited elevated levels of the autophagy initiation complex, which contains the Class III phosphoinositide 3-kinase Vps34. As a consequence, Vps34 activity and phosphatidylinositol 3-phosphate levels were higher in GαqQ209L hearts than wild type hearts, thus accounting for the higher abundance of autophagic vacuoles. These results indicate that an increase in autophagy is an early response to Gαq activation in the heart.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Activación Enzimática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Proc Natl Acad Sci U S A ; 109(6): 2003-8, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308354

RESUMEN

A critical regulator of autophagy is the Class III PI3K Vps34 (also called PIK3C3). Although Vps34 is known to play an essential role in autophagy in yeast, its role in mammals remains elusive. To elucidate the physiological function of Vps34 and to determine its precise role in autophagy, we have generated Vps34(f/f) mice, in which expression of Cre recombinase results in a deletion of exon 4 of Vps34 and a frame shift causing a deletion of 755 of the 887 amino acids of Vps34. Acute ablation of Vps34 in MEFs upon adenoviral Cre infection results in a diminishment of localized generation of phosphatidylinositol 3-phosphate and blockade of both endocytic and autophagic degradation. Starvation-induced autophagosome formation is blocked in both Vps34-null MEFs and liver. Liver-specific Albumin-Cre;Vps34(f/f) mice developed hepatomegaly and hepatic steatosis, and impaired protein turnover. Ablation of Vps34 in the heart of muscle creatine kinase-Cre;Vps34(f/f) mice led to cardiomegaly and decreased contractility. In addition, while amino acid-stimulated mTOR activation was suppressed in the absence of Vps34, the steady-state level of mTOR signaling was not affected in Vps34-null MEFs, liver, or cardiomyocytes. Taken together, our results indicate that Vps34 plays an essential role in regulating functional autophagy and is indispensable for normal liver and heart function.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hígado/enzimología , Hígado/patología , Miocardio/enzimología , Miocardio/patología , Aminoácidos/metabolismo , Animales , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Electrocardiografía , Embrión de Mamíferos/citología , Activación Enzimática , Fibroblastos/enzimología , Fibroblastos/patología , Eliminación de Gen , Hígado/fisiopatología , Hígado/ultraestructura , Ratones , Ratones Noqueados , Fagosomas/metabolismo , Fagosomas/patología , Fagosomas/ultraestructura , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
5.
Am J Physiol Endocrinol Metab ; 306(10): E1205-16, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24691033

RESUMEN

Adipose tissue is a highly insulin-responsive organ that contributes to metabolic regulation. Insulin resistance in the adipose tissue affects systemic lipid and glucose homeostasis. Phosphoinositide 3-kinase (PI3K) mediates downstream insulin signaling in adipose tissue, but its physiological role in vivo remains unclear. Using Cre recombinase driven by the aP2 promoter, we created mice that lack the class 1A PI3K catalytic subunit p110α or p110ß specifically in the white and brown adipose tissue. The loss of p110α, not p110ß, resulted in increased adiposity, glucose intolerance and liver steatosis. Mice lacking p110α in adipose tissue exhibited a decrease in energy expenditure but no change in food intake or activity compared with control animals. This low energy expenditure is a consequence of low cellular respiration in the brown adipocytes caused by a decrease in expression of key mitochondrial genes including uncoupling protein-1. These results illustrate a critical role of p110α in the regulation of energy expenditure through modulation of cellular respiration in the brown adipose tissue and suggest that compromised insulin signaling in adipose tissue might be involved in the onset of obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Obesidad/enzimología , Animales , Respiración de la Célula/genética , Células Cultivadas , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Obesidad/genética
6.
J Cardiovasc Pharmacol ; 58(4): 439-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21753738

RESUMEN

Diabetes is associated with an increased risk of heart failure and the development of a cardiomyopathy whose etiology is only partially understood. Ca entry through the voltage-dependent L-type Ca channel CaV1.2 initiates the contractile cycle in cardiac myocytes. Decreased cardiac contractility and depressed CaV1.2 function have been reported in obese type 2 diabetic db/db mice. Here, we demonstrate that a reduction in phosphoinositide 3-kinase (PI3K) signaling is a major contributor to the altered function of CaV1.2 in db/db cardiac myocytes. Using the whole-cell patch clamp technique, we determined that intracellular infusion of cardiac myocytes from db/db mice with phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K, increased the L-type Ca current (ICa,L) density nearly to the level seen in wild-type cells. PIP3 also reversed the positive shift in the voltage dependence of the steady-state current activation observed in db/db myocytes. Infusion of protein kinases that act downstream of PI3K also affected ICa,L. Akt1 and Akt2 were as effective as PIP3 in restoring the ICa,L density in db/db myocytes but did not affect the voltage dependence of current activation. The infusion of atypical PKC-ι (the human homolog of mouse PKC-λ) caused a small but significant increase in the ICa,L density and completely reversed the shift in voltage dependence of steady-state current activation. These results indicate that a defect in PI3K/PIP3/Akt/PKC-λ signaling is mainly responsible for the depressed CaV1.2 function in the hearts of db/db mice with type 2 diabetes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Diabetes Mellitus Experimental/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
7.
Circulation ; 120(4): 318-25, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19597047

RESUMEN

BACKGROUND: Phosphoinositide 3-kinase (PI3K) p110alpha plays a key role in insulin action and tumorigenesis. Myocyte contraction is initiated by an inward Ca(2+) current (I(Ca,L)) through the voltage-dependent L-type Ca(2+) channel (LTCC). The aim of this study was to evaluate whether p110alpha also controls cardiac contractility by regulating the LTCC. METHODS AND RESULTS: Genetic ablation of p110alpha (also known as Pik3ca), but not p110beta (also known as Pik3cb), in cardiac myocytes of adult mice reduced I(Ca,L) and blocked insulin signaling in the heart. p110alpha-null myocytes had a reduced number of LTCCs on the cell surface and a contractile defect that decreased cardiac function in vivo. Similarly, pharmacological inhibition of p110alpha decreased I(Ca,L) and contractility in canine myocytes. Inhibition of p110beta did not reduce I(Ca,L). CONCLUSIONS: PI3K p110alpha but not p110beta regulates the LTCC in cardiac myocytes. Decreased signaling to p110alpha reduces the number of LTCCs on the cell surface and thus attenuates I(Ca,L) and contractility.


Asunto(s)
Contracción Miocárdica/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Fosfatidilinositol 3-Quinasa Clase I , Perros , Femenino , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/fisiología
8.
Front Physiol ; 11: 587040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240105

RESUMEN

It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.

9.
J Clin Invest ; 129(8): 3264-3276, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112530

RESUMEN

The presence of tumor-infiltrating T cells is associated with favorable patient outcomes, yet most pancreatic cancers are immunologically silent and resistant to currently available immunotherapies. Here we show using a syngeneic orthotopic implantation model of pancreatic cancer that Pik3ca regulates tumor immunogenicity. Genetic silencing of Pik3ca in KrasG12D/Trp53R172H-driven pancreatic tumors resulted in infiltration of T cells, complete tumor regression, and 100% survival of immunocompetent host mice. By contrast, Pik3ca-null tumors implanted in T cell-deficient mice progressed and killed all of the animals. Adoptive transfer of tumor antigen-experienced T cells eliminated Pik3ca-null tumors in immunodeficient mice. Loss of PIK3CA or inhibition of its effector, AKT, increased the expression of MHC Class I and CD80 on tumor cells. These changes contributed to the increased susceptibility of Pik3ca-null tumors to T cell surveillance. Our results indicate that tumor cell PIK3CA-AKT signaling limits T cell recognition and clearance of pancreatic cancer cells. Strategies that target this pathway may yield an effective immunotherapy for this cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Experimentales/inmunología , Neoplasias Pancreáticas/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Antígeno B7-1/genética , Antígeno B7-1/inmunología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Noqueados , Ratones SCID , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/genética , Linfocitos T/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Gen Physiol ; 151(8): 1051-1058, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31217223

RESUMEN

Heart rate in physiological conditions is set by the sinoatrial node (SN), the primary cardiac pacing tissue. Phosphoinositide 3-kinase (PI3K) signaling is a major regulatory pathway in all normal cells, and its dysregulation is prominent in diabetes, cancer, and heart failure. Here, we show that inhibition of PI3K slows the pacing rate of the SN in situ and in vitro and reduces the early slope of diastolic depolarization. Furthermore, inhibition of PI3K causes a negative shift in the voltage dependence of activation of the pacemaker current, I F, while addition of its second messenger, phosphatidylinositol 3,4,5-trisphosphate, induces a positive shift. These shifts in the activation of I F are independent of, and larger than, those induced by the autonomic nervous system. These results suggest that PI3K is an important regulator of heart rate, and perturbations in this signaling pathway may contribute to the development of arrhythmias.


Asunto(s)
Frecuencia Cardíaca , Fosfatidilinositol 3-Quinasas/metabolismo , Sistemas de Mensajero Secundario , Nodo Sinoatrial/fisiología , Potenciales de Acción , Animales , Relojes Biológicos , Células Cultivadas , Perros , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Conejos , Nodo Sinoatrial/metabolismo
11.
Biochem J ; 394(Pt 3): 557-62, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16268778

RESUMEN

Several studies have reported that activation of G(q)-coupled receptors inhibits PI3K (phosphoinositide 3-kinase) signalling. In the present study, we used purified proteins to demonstrate that Galpha(q) directly inhibits p110alpha/p85alpha PI3K in a GTP-dependent manner. Activated Galpha(q) binds to the p110alpha/p85alpha PI3K with an apparent affinity that is seven times stronger than that for Galpha(q).GDP as measured by fluorescence spectroscopy. In contrast, Galpha(q) did not bind to the p110gamma PI3K. Fluorescence spectroscopy experiments also showed that Galpha(q) competes with Ras, a PI3K activator, for binding to p110alpha/p85alpha. Interestingly, co-precipitation studies using deletion mutants showed that Galpha(q) binds to the p85-binding domain of p110alpha and not to the Ras-binding domain. Expression of constitutively active Galpha(q)Q209L in cells inhibited Ras activation of the PI3K/Akt pathway but had no effect on Ras/Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] signalling. These results suggest that activation of G(q)-coupled receptors leads to increased binding of Galpha(q).GTP to some isoforms of PI3K, which might explain why these receptors inhibit this signalling pathway in certain cell types.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Proteínas ras/genética
12.
Trends Cardiovasc Med ; 27(7): 451-459, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28687226

RESUMEN

While it is well known that mutation of several different ion channels can cause congenital long QT syndrome, block of IKr is widely thought to be responsible for most cases of drug-induced acquired long QT syndrome (aLQTS). In this article, we review evidence supporting another cause of aLQTS due to inhibition of phosphoinositide 3-kinase (PI3K) signaling. Inhibition of PI3K affects multiple plateau currents, reducing IKr, IKs, and ICaL while increasing the persistent sodium current (INaP). The effects of PI3K inhibitors develop slowly, requiring hours to days to reach steady state. Dofetilide and terfenadine, an antihistamine on which much of the original IKr hypothesis was based, are among the many drugs that inhibit the PI3K pathway. Reduced PI3K signaling may also play a role in aLQTS associated with diabetes. Drug safety testing to identify aLQTS risk may be improved by examining PI3K-dependent effects that develop over time.


Asunto(s)
Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/efectos adversos , Potenciales de Acción , Animales , Sistema de Conducción Cardíaco/enzimología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Síndrome de QT Prolongado/enzimología , Síndrome de QT Prolongado/fisiopatología , Fosfatidilinositol 3-Quinasa/metabolismo , Bloqueadores de los Canales de Potasio/efectos adversos , Factores de Riesgo , Bloqueadores de los Canales de Sodio/efectos adversos
13.
Adipocyte ; 4(1): 70-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167406

RESUMEN

Obesity is often associated with systemic insulin resistance, and the decline of insulin sensitivity marks the progression of obesity into a disease state. We recently generated a mouse with adipose-specific ablation of the p110α phosphoinositide 3-kinase (PI3K) catalytic subunit to model insulin resistance in this organ. The phenotypes of this animal revealed novel roles of adipose PI3K signaling in regulating body weight and systemic glucose and lipid homeostasis. Loss of p110α in the brown adipose tissue resulted in reduced expression of mitochondrial-associated genes and decreased respiration in brown adipocytes. Reduced activity of the brown adipose tissue in p110α-null mice lowered their energy expenditure, which promoted obesity and systemic metabolic dysfunction with increased lipid deposition in the liver. Loss of PI3K activity did not affect adiposity until sexual maturation, suggesting that the effect of adipose PI3K on obesity might be linked to the development of puberty. Elevated leptin in the p110α knockout mice might interfere with the reproductive axis to delay pubertal development. The increase in adiposity induced by adipose-specific loss of p110α provides a link between insulin resistance and obesity onset and may also provide deeper insight into changes in prepubescent insulin sensitivity that can affect metabolism later in life.

14.
FEBS Lett ; 540(1-3): 106-10, 2003 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-12681492

RESUMEN

Several reports indicate that some G(alphaq)-coupled receptors antagonize the activation of phosphatidylinositol (PI) 3-kinase by receptor tyrosine kinases. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study how this G(alphaq)-coupled receptor inhibits platelet-derived growth factor (PDGF) activation of PI 3-kinase. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor inhibited PDGF-induced binding of PI 3-kinase to the PDGF receptor (PDGFR) and phosphorylation of the PDGFR at Tyr751, which forms a docking site for PI 3-kinase. By contrast, activation of phospholipase C gamma by PDGF and phosphorylation of the PDGFR at Tyr716 and Tyr771 were not inhibited by PE. The protein tyrosine phosphatase SHP-2, which dephosphorylates Tyr751 on the PDGFR, was more active in cells treated with PDGF plus PE than in cells treated with either agent alone. PDGF-induced PI 3-kinase signaling was also inhibited by treatment of cells with Pasteurella multocida toxin to activate G(alphaq). These results suggest that the alpha(1A) adrenergic receptor, and perhaps other G(alphaq)-coupled receptors, uses tyrosine dephosphorylation to block PI 3-kinase activation by PDGF.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 1 , Proteínas Bacterianas , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Tirosina/metabolismo , Toxinas Bacterianas/farmacología , Activación Enzimática , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/química , Receptores Adrenérgicos alfa 1 , Transducción de Señal
15.
FEBS Lett ; 550(1-3): 51-6, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12935885

RESUMEN

The mammalian target of rapamycin (mTOR) promotes increased protein synthesis required for cell growth. It has been suggested that phosphatidic acid, produced upon activation of phospholipase D (PLD), is a common mediator of growth factor activation of mTOR signaling. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor induced mTOR autophosphorylation at Ser2481 and phosphorylation of two mTOR effectors, 4E-BP1 and p70 S6 kinase. These PE-induced phosphorylations were greatly reduced in cells depleted of intracellular Ca(2+). PE activation of PLD was also inhibited in Ca(2+)-depleted cells. Incubation of cells with 1-butanol to inhibit PLD signaling attenuated PE-induced phosphorylation of mTOR, 4E-BP1 and p70 S6 kinase. By contrast, platelet-derived growth factor (PDGF)-induced phosphorylation of these proteins was not blocked by Ca(2+) depletion or 1-butanol treatment. These results suggest that the alpha(1A) adrenergic receptor promotes mTOR signaling via a pathway that requires an increase in intracellular Ca(2+) and activation of PLD. The PDGF receptor, by contrast, appears to activate mTOR by a distinct pathway that does not require Ca(2+) or PLD.


Asunto(s)
Calcio/metabolismo , Fosfolipasa D/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , 1-Butanol/farmacología , Agonistas de Receptores Adrenérgicos alfa 1 , Agonistas alfa-Adrenérgicos/farmacología , Animales , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Fenilefrina/farmacología , Fosfolipasa D/genética , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/genética , Ratas , Receptores Adrenérgicos alfa 1/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR
16.
Diabetes ; 62(12): 4257-65, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23974924

RESUMEN

Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mechanisms responsible for this lethal complication are poorly understood. Diabetes is associated with a reduction in phosphoinositide 3-kinase (PI3K) signaling, which regulates the action potential duration (APD) of individual myocytes and thus the QT interval by altering multiple ion currents, including the persistent sodium current INaP. Here, we report a mechanism for diabetes-induced QT prolongation that involves an increase in INaP caused by defective PI3K signaling. Cardiac myocytes of mice with type 1 or type 2 diabetes exhibited an increase in APD that was reversed by expression of constitutively active PI3K or intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K. The diabetic myocytes also showed an increase in INaP that was reversed by activated PI3K or PIP3. The increases in APD and INaP in myocytes translated into QT interval prolongation for both types of diabetic mice. The long QT interval of type 1 diabetic hearts was shortened by insulin treatment ex vivo, and this effect was blocked by a PI3K inhibitor. Treatment of both types of diabetic mouse hearts with an INaP blocker also shortened the QT interval. These results indicate that downregulation of cardiac PI3K signaling in diabetes prolongs the QT interval at least in part by causing an increase in INaP. This mechanism may explain why the diabetic population has an increased risk of life-threatening arrhythmias.


Asunto(s)
Arritmias Cardíacas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sistema de Conducción Cardíaco/anomalías , Fosfatidilinositol 3-Quinasas/metabolismo , Sodio/fisiología , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación
17.
Sci Transl Med ; 4(131): 131ra50, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22539774

RESUMEN

Many drugs, including some commonly used medications, can cause abnormal heart rhythms and sudden death, as manifest by a prolonged QT interval in the electrocardiogram. Cardiac arrhythmias caused by drug-induced long QT syndrome are thought to result mainly from reductions in the delayed rectifier potassium ion (K(+)) current I(Kr). Here, we report a mechanism for drug-induced QT prolongation that involves changes in multiple ion currents caused by a decrease in phosphoinositide 3-kinase (PI3K) signaling. Treatment of canine cardiac myocytes with inhibitors of tyrosine kinases or PI3Ks caused an increase in action potential duration that was reversed by intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate. The inhibitors decreased the delayed rectifier K(+) currents I(Kr) and I(Ks), the L-type calcium ion (Ca(2+)) current I(Ca,L), and the peak sodium ion (Na(+)) current I(Na) and increased the persistent Na(+) current I(NaP). Computer modeling of the canine ventricular action potential showed that the drug-induced change in any one current accounted for less than 50% of the increase in action potential duration. Mouse hearts lacking the PI3K p110α catalytic subunit exhibited a prolonged action potential and QT interval that were at least partly a result of an increase in I(NaP). These results indicate that down-regulation of PI3K signaling directly or indirectly via tyrosine kinase inhibition prolongs the QT interval by affecting multiple ion channels. This mechanism may explain why some tyrosine kinase inhibitors in clinical use are associated with increased risk of life-threatening arrhythmias.


Asunto(s)
Síndrome de QT Prolongado/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/toxicidad , Transducción de Señal/efectos de los fármacos , Potenciales de Acción , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Fosfatidilinositol 3-Quinasa Clase I , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Perros , Electrocardiografía , Femenino , Síndrome de QT Prolongado/enzimología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Masculino , Ratones , Ratones Noqueados , Modelos Cardiovasculares , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Medición de Riesgo , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo , Factores de Tiempo
18.
Diabetes ; 60(5): 1483-92, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21464441

RESUMEN

OBJECTIVE: To determine whether the phosphoinositide 3-kinase (PI3K) catalytic subunits p110-α and p110-ß play a role in liver steatosis induced by a high-fat diet (HFD). RESEARCH DESIGN AND METHODS: Liver-specific p110-α and p110-ß knockout mice and control animals for each group were fed an HFD or normal chow for 8 weeks. Biochemical assays and quantitative real-time PCR were used to measure triglyceride, expression of lipogenic and gluconeogenic genes, and activity of protein kinases downstream of PI3K in liver lysates. Fatty acid uptake and incorporation into triglycerides were assessed in isolated hepatocytes. RESULTS: Hepatic triglyceride levels in HFD-fed p110-α(-/-) mice were 84 ± 3% lower than in p110-α(+/+) mice, whereas the loss of p110-ß did not significantly alter liver lipid accumulation. p110-α(-/-) livers also showed a reduction in atypical protein kinase C activity and decreased mRNA and protein expression of several lipogenic genes. Hepatocytes isolated from p110-α(-/-) mice exhibited decreased palmitate uptake and reduced fatty acid incorporation into triglycerides as compared with p110-α(+/+) cells, and hepatic expression of liver fatty acid binding protein was lower in p110-α(-/-) mice fed the HFD as compared with controls. Ablation of neither p110-α nor p110-ß ameliorated glucose intolerance induced by the HFD, and genes involved in gluconeogenesis were upregulated in the liver of both knockout animals. CONCLUSIONS: PI3K p110-α, and not p110-ß, promotes liver steatosis in mice fed an HFD. p110-α might exert this effect in part through activation of atypical protein kinase C, upregulation of lipogenesis, and increased uptake of fatty acids.


Asunto(s)
Grasas de la Dieta/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Western Blotting , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I , Hígado Graso/genética , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
PLoS One ; 6(9): e24404, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912691

RESUMEN

BACKGROUND: Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently. METHODS AND RESULTS: Genetic ablation of both p110α and p110ß in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca(2+) channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca(2+) transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level. CONCLUSIONS: PI3K p110α and p110ß are required to maintain the organized network of T-tubules that is vital for efficient Ca(2+)-induced Ca(2+) release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials.


Asunto(s)
Miocitos Cardíacos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Sarcolema/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Contracción Muscular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Transporte de Proteínas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/patología
20.
J Cell Biol ; 191(4): 827-43, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21059846

RESUMEN

Autophagy is an evolutionarily conserved cell renewal process that depends on phosphatidylinositol 3-phosphate (PtdIns(3)P). In metazoans, autophagy is inhibited by PtdIns(3,4,5)P(3), the product of class IA PI3Ks, which mediates the activation of the Akt-TOR kinase cascade. However, the precise function of class IA PI3Ks in autophagy remains undetermined. Class IA PI3Ks are heterodimeric proteins consisting of an 85-kD regulatory subunit and a 110-kD catalytic subunit. Here we show that the class IA p110-ß catalytic subunit is a positive regulator of autophagy. Genetic deletion of p110-ß results in impaired autophagy in mouse embryonic fibroblasts, liver, and heart. p110-ß does not promote autophagy by affecting the Akt-TOR pathway. Rather, it associates with the autophagy-promoting Vps34-Vps15-Beclin 1-Atg14L complex and facilitates the generation of cellular PtdIns(3)P. Our results unveil a previously unknown function for p110-ß as a positive regulator of autophagy in multicellular organisms.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Inhibidores Enzimáticos/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Células HEK293 , Corazón/fisiología , Humanos , Hígado/citología , Hígado/fisiología , Ratones , Ratones Noqueados , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA