Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 402(10405): 871-881, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37478883

RESUMEN

BACKGROUND: Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS: We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS: From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION: Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING: Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Enfermedad Crónica , Inmunoterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Estadificación de Neoplasias , Nivolumab/efectos adversos , Recurrencia , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Resultado del Tratamiento , Adolescente , Adulto
2.
J Appl Clin Med Phys ; 24(4): e13960, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36913192

RESUMEN

PURPOSE: To quantify the potential error in outputs for flattening filter free (FFF) beams associated with use of a lead foil in beam quality determination per the addendum protocol for TG-51, we examined differences in measurements of the beam quality conversion factor kQ when using or not using lead foil. METHODS: Two FFF beams, a 6 MV FFF and a 10 MV FFF, were calibrated on eight Varian TrueBeams and two Elekta Versa HD linear accelerators (linacs) according to the TG-51 addendum protocol by using Farmer ionization chambers [TN 30013 (PTW) and SNC600c (Sun Nuclear)] with traceable absorbed dose-to-water calibrations. In determining kQ , the percentage depth-dose at 10 cm [PDD(10)] was measured with 10×10 cm2 field size at 100 cm source-to-surface distance (SSD). PDD(10) values were measured either with a 1 mm lead foil positioned in the path of the beam [%dd(10)Pb ] or with omission of a lead foil [%dd(10)]. The %dd(10)x values were then calculated and the kQ factors determined by using the empirical fit equation in the TG-51 addendum for the PTW 30013 chambers. A similar equation was used to calculate kQ for the SNC600c chamber, with the fitting parameters taken from a very recent Monte Carlo study. The differences in kQ factors were compared for with lead foil vs. without lead foil. RESULTS: Differences in %dd(10)x with lead foil and with omission of lead foil were 0.9 ± 0.2% for the 6 MV FFF beam and 0.6 ± 0.1% for the 10 MV FFF beam. Differences in kQ values with lead foil and with omission of lead foil were -0.1 ± 0.02% for the 6 MV FFF and -0.1 ± 0.01% for the 10 MV FFF beams. CONCLUSION: With evaluation of the lead foil role in determination of the kQ factor for FFF beams. Our results suggest that the omission of lead foil introduces approximately 0.1% of error for reference dosimetry of FFF beams on both TrueBeam and Versa platforms.


Asunto(s)
Fenilpropionatos , Fotones , Humanos , Radiometría/métodos , Efectividad Biológica Relativa , Aceleradores de Partículas
3.
J Appl Clin Med Phys ; 23(7): e13633, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35533212

RESUMEN

PURPOSE: To better meet clinical needs and facilitate optimal treatment planning, we added two new electron energy beams (7 and 11 MeV) to two Varian TrueBeam linacs. METHODS: We worked with the vendor to create two additional customized electron energies without hardware modifications. For each beam, we set the bending magnet current and then optimized other beam-specific parameters to achieve depths of 50% ionization (I50 ) of 2.9 cm for 7 MeV and 4.2 cm for the 11 MeV beam with the 15 × 15 cm2 cone at 100 cm source-to-surface distance (SSD) by using an ionization chamber profiler (ICP) with a double-wedge (DW) phantom. Beams were steered and balanced to optimize symmetry with the ICP. After all parameters were set, full commissioning was done including measuring beam profiles, percent depth doses (PDDs), output factors (OFs) at standard, and extended SSDs. Measured data were compared between the two linacs and against the values calculated by our RayStation treatment planning system (TPS) following Medical Physics Practice Guideline 5.a (MPPG 5.a) guidelines. RESULTS: The I50 values initially determined with the ICP/DW agreed with those from a PDD-scanned in-water phantom within 0.2 mm for the 7 and 11 MeV on both linacs. Comparison of the beam characteristics from the two linacs indicated that flatness and symmetry agreed within 0.4%, and point-by-point differences in PDD were within 0.01% ± 0.3% for the 7 MeV and 0.01% ± 0.3% for the 11 MeV. The OF ratios between the two linacs were 1.000 ± 0.007 for the 7 MeV and 1.004 ± 0.007 for the 11 MeV. Agreement between TPS-calculated outputs and measurements were -0.1% ± 1.0% for the 7 MeV and 0.2% ± 0.8% for the 11 MeV. All other parameters met the MPPG 5.a's 3%/3-mm criteria. CONCLUSION: We were able to add two new beam energies with no hardware modifications. Tuning of the new beams was facilitated by the ICP/DW system allowing us to have the procedures done in a few hours and achieve highly consistent results across two linacs. PACS numbers: 87.55.Qr, 87.56.Fc.


Asunto(s)
Electrones , Planificación de la Radioterapia Asistida por Computador , Humanos , Aceleradores de Partículas , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
4.
Lancet Oncol ; 22(10): 1448-1457, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529930

RESUMEN

BACKGROUND: A previous pooled analysis of the STARS and ROSEL trials showed higher survival after stereotactic ablative radiotherapy (SABR) than with surgery for operable early-stage non-small-cell lung cancer (NSCLC), but that analysis had notable limitations. This study reports long-term results of the revised STARS trial, in which the SABR group was re-accrued with a larger sample size, along with a protocol-specified propensity-matched comparison with a prospectively registered, contemporary institutional cohort of patients who underwent video-assisted thoracoscopic surgical lobectomy with mediastinal lymph node dissection (VATS L-MLND). METHODS: This single-arm prospective trial was done at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) and enrolled patients aged 18 years or older with a Zubrod performance status of 0-2, newly diagnosed and histologically confirmed NSCLC with N0M0 disease (squamous cell, adenocarcinoma, large cell, or NSCLC not otherwise specified), and a tumour diameter of 3 cm or less. This trial did not include patients from the previous pooled analysis. SABR dosing was 54 Gy in three fractions (for peripheral lesions) or 50 Gy in four fractions (for central tumours; simultaneous integrated boost to gross tumour totalling 60 Gy). The primary endpoint was the 3-year overall survival. For the propensity-matching analysis, we used a surgical cohort from the MD Anderson Department of Thoracic and Cardiovascular Surgery's prospectively registered, institutional review board-approved database of all patients with clinical stage I NSCLC who underwent VATS L-MLND during the period of enrolment in this trial. Non-inferiority could be claimed if the 3-year overall survival rate after SABR was lower than that after VATS L-MLND by 12% or less and the upper bound of the 95% CI of the hazard ratio (HR) was less than 1·965. Propensity matching consisted of determining a propensity score using a multivariable logistic regression model including several covariates (age, tumour size, histology, performance status, and the interaction of age and sex); based on the propensity scores, one patient in the SABR group was randomly matched with one patient in the VATS L-MLND group using a 5:1 digit greedy match algorithm. This study is registered with ClinicalTrials.gov, NCT02357992. FINDINGS: Between Sept 1, 2015, and Jan 31, 2017, 80 patients were enrolled and included in efficacy and safety analyses. Median follow-up time was 5·1 years (IQR 3·9-5·8). Overall survival was 91% (95% CI 85-98) at 3 years and 87% (79-95) at 5 years. SABR was tolerated well, with no grade 4-5 toxicity and one (1%) case each of grade 3 dyspnoea, grade 2 pneumonitis, and grade 2 lung fibrosis. No serious adverse events were recorded. Overall survival in the propensity-matched VATS L-MLND cohort was 91% (95% CI 85-98) at 3 years and 84% (76-93) at 5 years. Non-inferiority was claimed since the 3-year overall survival after SABR was not lower than that observed in the VATS L-MLND group. There was no significant difference in overall survival between the two patient cohorts (hazard ratio 0·86 [95% CI 0·45-1·65], p=0·65) from a multivariable analysis. INTERPRETATION: Long-term survival after SABR is non-inferior to VATS L-MLND for operable stage IA NSCLC. SABR remains promising for such cases but multidisciplinary management is strongly recommended. FUNDING: Varian Medical Systems and US National Cancer Institute (National Institutes of Health).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/cirugía , Neumonectomía , Radiocirugia , Cirugía Torácica Asistida por Video , Anciano , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Escisión del Ganglio Linfático , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neumonectomía/efectos adversos , Neumonectomía/mortalidad , Supervivencia sin Progresión , Estudios Prospectivos , Radiocirugia/efectos adversos , Radiocirugia/mortalidad , Texas , Cirugía Torácica Asistida por Video/efectos adversos , Cirugía Torácica Asistida por Video/mortalidad , Factores de Tiempo
5.
J Appl Clin Med Phys ; 22(12): 37-50, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34643323

RESUMEN

A 6 MV flattened beam model for a Varian TrueBeamSTx c-arm treatment delivery system in RayStation, developed and validated at one institution, was implemented and validated at another institution. The only parameter value adjustments were to accommodate machine output at the second institution. Validation followed MPPG 5.a. recommendations, with particular attention paid to IMRT and VMAT deliveries. With this minimal adjustment, the model passed validation across a broad spectrum of treatment plans, measurement devices, and staff who created the test plans and executed the measurements. This work demonstrates the possibility of using a single template model in the same treatment planning system with matched machines in a mixed vendor environment.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica
6.
J Appl Clin Med Phys ; 22(8): 156-167, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34310827

RESUMEN

PURPOSE: Re-planning for four-dimensional computed tomography (4DCT)-based lung adaptive radiotherapy commonly requires deformable dose mapping between the planning average-intensity image (AVG) and the newly acquired AVG. However, such AVG-AVG deformable image registration (DIR) lacks accuracy assessment. The current work quantified and compared geometric accuracies of AVG-AVG DIR and corresponding phase-phase DIRs, and subsequently investigated the clinical impact of such AVG-AVG DIR on deformable dose mapping. METHODS AND MATERIALS: Hybrid intensity-based AVG-AVG and phase-phase DIRs were performed between the planning and mid-treatment 4DCTs of 28 non-small cell lung cancer patients. An automated landmark identification algorithm detected vessel bifurcation pairs in both lungs. Target registration error (TRE) of these landmark pairs was calculated for both DIR types. The correlation between TRE and respiratory-induced landmark motion in the planning 4DCT was analyzed. Global and local dose metrics were used to assess the clinical implications of AVG-AVG deformable dose mapping with both DIR types. RESULTS: TRE of AVG-AVG and phase-phase DIRs averaged 3.2 ± 1.0 and 2.6 ± 0.8 mm respectively (p < 0.001). Using AVG-AVG DIR, TREs for landmarks with <10 mm motion averaged 2.9 ± 2.0 mm, compared to 3.1 ± 1.9 mm for the remaining landmarks (p < 0.01). Comparatively, no significant difference was demonstrated for phase-phase DIRs. Dosimetrically, no significant difference in global dose metrics was observed between doses mapped with AVG-AVG DIR and the phase-phase DIR, but a positive linear relationship existed (p = 0.04) between the TRE of AVG-AVG DIR and local dose difference. CONCLUSIONS: When the region of interest experiences <10 mm respiratory-induced motion, AVG-AVG DIR may provide sufficient geometric accuracy; conversely, extra attention is warranted, and phase-phase DIR is recommended. Dosimetrically, the differences in geometric accuracy between AVG-AVG and phase-phase DIRs did not impact global lung-based metrics. However, as more localized dose metrics are needed for toxicity assessment, phase-phase DIR may be required as its lower mean TRE improved voxel-based dosimetry.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Tomografía Computarizada Cuatridimensional , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador
7.
J Appl Clin Med Phys ; 22(7): 121-127, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34042271

RESUMEN

PURPOSE: Establish and compare two metrics for monitoring beam energy changes in the Halcyon platform and evaluate the accuracy of these metrics across multiple Halcyon linacs. METHOD: The first energy metric is derived from the diagonal normalized flatness (FDN ), which is defined as the ratio of the average measurements at a fixed off-axis equal distance along the open profiles in two diagonals to the measurement at the central axis with an ionization chamber array (ICA). The second energy metric comes from the area ratio (AR) of the quad wedge (QW) profiles measured with the QW on the top of the ICA. Beam energy is changed by adjusting the magnetron current in a non-clinical Halcyon. With D10cm measured in water at each beam energy, the relationships between FDN or AR energy metrics to D10cm in water is established with linear regression across six energy settings. The coefficients from these regressions allow D10cm (FDN ) calculation from FDN using open profiles and D10cm (QW) calculation from AR using QW profiles. RESULTS: Five Halcyon linacs from five institutions were used to evaluate the accuracy of the D10cm (FDN ) and the D10cm (QW) energy metrics by comparing to the D10cm values computed from the treatment planning system (TPS) and D10cm measured in water. For the five linacs, the D10cm (FDN ) reported by the ICA based on FDN from open profiles agreed with that calculated by TPS within -0.29 ± 0.23% and 0.61% maximum discrepancy; the D10cm (QW) reported by the QW profiles agreed with that calculated by TPS within -0.82 ± 1.27% and -2.43% maximum discrepancy. CONCLUSION: The FDN -based energy metric D10cm (FDN ) can be used for acceptance testing of beam energy, and also for the verification of energy in periodic quality assurance (QA) processes.


Asunto(s)
Benchmarking , Planificación de la Radioterapia Asistida por Computador , Humanos , Modelos Lineales , Aceleradores de Partículas , Fotones , Dosificación Radioterapéutica
8.
J Appl Clin Med Phys ; 22(9): 94-102, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34250715

RESUMEN

The purpose of the study was to develop and clinically deploy an automated, deep learning-based approach to treatment planning for whole-brain radiotherapy (WBRT). We collected CT images and radiotherapy treatment plans to automate a beam aperture definition from 520 patients who received WBRT. These patients were split into training (n = 312), cross-validation (n = 104), and test (n = 104) sets which were used to train and evaluate a deep learning model. The DeepLabV3+ architecture was trained to automatically define the beam apertures on lateral-opposed fields using digitally reconstructed radiographs (DRRs). For the beam aperture evaluation, 1st quantitative analysis was completed using a test set before clinical deployment and 2nd quantitative analysis was conducted 90 days after clinical deployment. The mean surface distance and the Hausdorff distances were compared in the anterior-inferior edge between the clinically used and the predicted fields. Clinically used plans and deep-learning generated plans were evaluated by various dose-volume histogram metrics of brain, cribriform plate, and lens. The 1st quantitative analysis showed that the average mean surface distance and Hausdorff distance were 7.1 mm (±3.8 mm) and 11.2 mm (±5.2 mm), respectively, in the anterior-inferior edge of the field. The retrospective dosimetric comparison showed that brain dose coverage (D99%, D95%, D1%) of the automatically generated plans was 29.7, 30.3, and 32.5 Gy, respectively, and the average dose of both lenses was up to 19.0% lower when compared to the clinically used plans. Following the clinical deployment, the 2nd quantitative analysis showed that the average mean surface distance and Hausdorff distance between the predicted and clinically used fields were 2.6 mm (±3.2 mm) and 4.5 mm (±5.6 mm), respectively. In conclusion, the automated patient-specific treatment planning solution for WBRT was implemented in our clinic. The predicted fields appeared consistent with clinically used fields and the predicted plans were dosimetrically comparable.


Asunto(s)
Radioterapia de Intensidad Modulada , Encéfalo/diagnóstico por imagen , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
9.
J Appl Clin Med Phys ; 21(1): 18-25, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31633877

RESUMEN

Validate that a two-dimensional (2D) ionization chamber array (ICA) combined with a double-wedge plate (DWP) can track changes in electron beam energy well within 2.0 mms as recommended by TG-142 for monthly quality assurance (QA). Electron beam profiles of 4-22 MeV were measured for a 25 × 25 cm2 cone using an ICA with a DWP placed on top of it along one diagonal axis. The relationship between the full width half maximum (FWHM) field size created by DWP energy degradation across the field and the depth of 50% dose in water (R50 ) is calibrated for a given ICA/DWP combination in beams of know energies (R50 values). Once this relationship is established, the ICA/DWP system will report the R50 FWHM directly. We calibrated the ICA/DWP on a linear accelerator with energies of 6, 9, 12, 16, 20, and 22 MeV. The R50 FWHM values of these beams and eight other beams with different R50 values were measured and compared with the R50 measured in water, that is, R50 Water. Resolving changes of R50 up to 0.2 cm with ICA/DWP was tested by adding solid-water to shift the energy and was verified with R50 Water measurements. To check the long-term reproducibility of ICA/DWP we measured R50 FWHM on a monthly basis for a period of 3 yr. We proposed a universal calibration procedure considering the off-axis corrections and compared calibrations and measurements on three types of linacs (Varian TrueBeam, Varian C-series, and Elekta) with different nominal energies and R50 values. For all 38 beams on same type of linac with R50 values over a range of 2-8.8 cm, the R50 FWHM reported by the ICA/DWP system agreed with that measured in water within 0.01 ± 0.03 cm (mean ± 1σ) and maximum discrepancy of 0.07 cm. Long-term reproducibility results show the ICA/DWP system to be within 0.04 cm of their baseline over 3 yr. With the universal calibration the maximum discrepancy between R50 FWHM and R50 Water for different types of linac reduced from 0.25 to 0.06 cm. Comparison of R50 FWHM values and R50 Water values and long-term reproducibility of R50 FWHM values indicates that the ICA/DWP can be used for monitoring of electron beam energy constancy well within TG-142 recommended tolerance.


Asunto(s)
Electrones , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Control de Calidad , Planificación de la Radioterapia Asistida por Computador/métodos , Calibración , Humanos , Método de Montecarlo , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Reproducibilidad de los Resultados
10.
J Appl Clin Med Phys ; 20(10): 111-117, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31553525

RESUMEN

We tested whether an ionization chamber array (ICA) and a one-dimensional water scanner (1DS) could be used instead of a three-dimensional water scanning system (3DWS) for acceptance testing and commissioning verification of the Varian Halcyon-Eclipse Treatment Planning System (TPS). The Halcyon linear accelerator has a single 6-MV flattening-filter-free beam and a nonadjustable beam model for the TPS. Beam data were measured with a 1DS, ICA, ionization chambers, and electrometer. Acceptance testing and commissioning were done simultaneously by comparing the measured data with TPS-calculated percent-depth-dose (PDD) and profiles. The ICA was used to measure profiles of various field sizes (10-, 20-, and 28 cm2 ) at depths of dmax (1.3 cm), 5-, 10-, and 20 cm. The 1DS was used for output factors (OFs) and PDDs. OFs were measured with 1DS for various fields (2-28 cm2 ) at a source-to-surface distance of 90 cm. All measured data were compared with TPS-calculations. Profiles, off-axis ratios (OAR), PDDs and OFs were also measured with a 3DWS as a secondary check. Profiles between the ICA and TPS (ICA and 3DWS) at various depths across the fields indicated that the maximum discrepancies in high-dose and low-dose tail were within 2% and 3%, respectively, and the maximum distance-to-agreement in the penumbra region was <3 mm. The largest OAR differences between ICA and TPS (ICA and 3DWS) values were 0.23% (-0.25%) for a 28 × 28 cm2 field, and the largest point-by-point PDD differences between 1DS and TPS (1DS and 3DWS) were -0.41% ± 0.12% (-0.32% ± 0.17%) across the fields. Both OAR and PDD showed the beam energy is well matched to the TPS model. The average ratios of 1DS-measured OFs to the TPS (1DS to 3DWS) values were 1.000 ± 0.002 (0.999 ± 0.003). The Halcyon-Eclipse system can be accepted and commissioned without the need for a 3DWS.


Asunto(s)
Algoritmos , Aceleradores de Partículas/instrumentación , Planificación de Atención al Paciente/normas , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/normas , Simulación por Computador , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Agua
11.
J Appl Clin Med Phys ; 20(8): 47-55, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31294923

RESUMEN

The purpose of this study is to investigate the dosimetric impact of multi-leaf collimator (MLC) positioning errors on a Varian Halcyon for both random and systematic errors, and to evaluate the effectiveness of portal dosimetry quality assurance in catching clinically significant changes caused by these errors. Both random and systematic errors were purposely added to 11 physician-approved head and neck volumetric modulated arc therapy (VMAT) treatment plans, yielding a total of 99 unique plans. Plans were then delivered on a preclinical Varian Halcyon linear accelerator and the fluence was captured by an opposed portal dosimeter. When comparing dose-volume histogram (DVH) values of plans with introduced MLC errors to known good plans, clinically significant changes to target structures quickly emerged for plans with systematic errors, while random errors caused less change. For both error types, the magnitude of clinically significant changes increased as error size increased. Portal dosimetry was able to detect all systematic errors, while random errors of ±5 mm or less were unlikely to be detected. Best detection of clinically significant errors, while minimizing false positives, was achieved by following the recommendations of AAPM TG-218. Furthermore, high- to moderate correlation was found between dose DVH metrics for normal tissues surrounding the target and portal dosimetry pass rates. Therefore, it may be concluded that portal dosimetry on the Halcyon is robust enough to detect errors in MLC positioning before they introduce clinically significant changes to VMAT treatment plans.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Aceleradores de Partículas/instrumentación , Posicionamiento del Paciente , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control , Humanos , Órganos en Riesgo/efectos de la radiación , Radiometría/métodos , Radiometría/normas , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
12.
J Appl Clin Med Phys ; 19(3): 168-176, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29577578

RESUMEN

Routine quality assurance for linear accelerators (linacs) usually involves verification of beam steering with a water scanning system. We established a beam steering procedure that uses a 2D ionization chamber array (ICA) and verified the equivalence of beam symmetry between the ICA and a water scanning system. The ICA calibration accuracy, reproducibility and stability were evaluated and the uncertainty in the measurement of beam symmetry due to the array calibration was examined. Forty-five photon beams and 80 electron beams across 7 Varian C-series and 4 TrueBeam linacs were steered in the radial and transverse directions using an ICA. After beam steering, profiles were re-measured using the ICA and in-water using a 3D Scanner (3DS). Beam symmetries measured with the ICA and 3DS were compared by (a) calculating the difference in point-by-point symmetry, (b) plotting the histogram distribution of the symmetry differences, and (c) comparing ICA and 3DS differences with their respective Varian symmetry protocol analysis. Array calibrations from five different occurrences (2012 to 2016) over six different beams reproduced within 0.5%. The uncertainty in beam symmetry was less than 0.5% due to the uncertainties in the array calibration. After all beams were steered using the ICA, the point-by-point symmetry differences between ICA and 3DS at the off-axis positions of 20% and 80% of field size for all beam profiles indicated that 95% of point-by-point symmetry comparisons agreed within 0.7%, and 100% agreed within 1.0%; after steering with the ICA 97.8% of photon beam profiles (88 of 90) and 97.5% of electron beam profiles (156 of 160) had symmetry within 1% when measured with the 3DS. All photon and electron beam profiles had symmetry within 1.1% and 1.2%, respectively, for profiles measured with the 3DS. Our data demonstrate that a calibrated ICA can be used to steer photon and electron beams achieving beam symmetry within 1% when re-measured with a 3D water scanning system.


Asunto(s)
Aceleradores de Partículas/instrumentación , Fotones , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Calibración , Humanos
13.
J Appl Clin Med Phys ; 19(5): 375-382, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30016578

RESUMEN

PURPOSE: To evaluate the ability of the machine performance check (MPC) on the Halcyon to detect errors, with comparison with the TrueBeam. METHODS: MPC is an automated set of quality assurance (QA) tests that use a phantom placed on the couch and the linac's imaging system(s) to verify the beam constancy and mechanical performance of the Halcyon and TrueBeam linacs. In order to evaluate the beam constancy tests, we inserted solid water slabs between the beam source and the megavoltage imager to simulate changes in beam output, flatness, and symmetry. The MPC results were compared with measurements, using two-dimensional array under the same conditions. We then studied the accuracy of MPC geometric tests. The accuracies of the relative gantry offset and couch shift tests were evaluated by intentionally inserting phantom shifts, using a rotating or linear motion stage. The MLC offset and absolute gantry offset tests were assessed by miscalibrating these motions on a Halcyon linac. RESULTS: For the Halcyon system, the average difference in the measured beam output between the IC Profiler and MPC, after intentional changes, was 1.3 ± 0.5% (for changes ≤5%). For Halcyon, the MPC test failed (i.e., prevented treatment) when the beam symmetry change was over 1.9%. The accuracy of the MLC offset test was within 0.05 mm. The absolute gantry offset test was able to detect an offset as small as 0.02°. The accuracy of the absolute couch shift test was 0.03 mm. The accuracy of relative couch shift test of Halcyon was measured as 0.16 mm. CONCLUSION: We intentionally inserted errors to evaluate the ability of the MPC to identify errors in dosimetric and geometric parameters. These results showed that the MPC is sufficiently accurate to be effectively used for daily QA of the Halcyon and TrueBeam treatment devices.


Asunto(s)
Aceleradores de Partículas , Fantasmas de Imagen , Radiometría
14.
J Appl Clin Med Phys ; 19(3): 52-57, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29500856

RESUMEN

PURPOSE: The aim of this study was to measure and compare the mega-voltage imaging dose from the Halcyon medical linear accelerator (Varian Medical Systems) with measured imaging doses with the dose calculated by Eclipse treatment planning system. METHODS: An anthropomorphic thorax phantom was imaged using all imaging techniques available with the Halcyon linac - MV cone-beam computed tomography (MV-CBCT) and orthogonal anterior-posterior/lateral pairs (MV-MV), both with high-quality and low-dose modes. In total, 54 imaging technique, isocenter position, and field size combinations were evaluated. The imaging doses delivered to 11 points in the phantom (in-target and extra-target) were measured using an ion chamber, and compared with the imaging doses calculated using Eclipse. RESULTS: For high-quality MV-MV mode, the mean extra-target doses delivered to the heart, left lung, right lung and spine were 1.18, 1.64, 0.80, and 1.11 cGy per fraction, respectively. The corresponding mean in-target doses were 3.36, 3.72, 2.61, and 2.69 cGy per fraction, respectively. For MV-MV technique, the extra-target imaging dose had greater variation and dependency on imaging field size than did the in-target dose. Compared to MV-MV technique, the imaging dose from MV-CBCT was less sensitive to the location of the organ relative to the treatment field. For high-quality MV-CBCT mode, the mean imaging doses to the heart, left lung, right lung, and spine were 8.45, 7.16, 7.19, and 6.51 cGy per fraction, respectively. For both MV-MV and MV-CBCT techniques, the low-dose mode resulted in an imaging dose about half of that in high-quality mode. CONCLUSION: The in-target doses due to MV imaging using the Halcyon ranged from 0.59 to 9.75 cGy, depending on the choice of imaging technique. Extra-target doses from MV-MV technique ranged from 0 to 2.54 cGy. The MV imaging dose was accurately calculated by Eclipse, with maximum differences less than 0.5% of a typical treatment dose (assuming a 60 Gy prescription). Therefore, the cumulative imaging and treatment plan dose distribution can be expected to accurately reflect the actual dose.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Tórax/efectos de la radiación , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Tórax/diagnóstico por imagen
15.
J Appl Clin Med Phys ; 19(3): 355-359, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29500846

RESUMEN

PURPOSE: The purpose of this study was to develop and test a set of illustrated instructions for effective training for mechanical quality assurance (QA) of medical linear accelerators (linac). METHODS: Illustrated instructions were created for mechanical QA and underwent several steps of review, testing, and refinement. Eleven testers with no recent QA experience were then recruited from our radiotherapy department (one student, two computational scientists, and eight dosimetrists). This group was selected because they have experience of radiation therapy but no preconceived ideas about how to do QA. The following parameters were progressively decalibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (five testers); Group B = Group A + wall laser position, couch lateral and vertical position, collimator angle (three testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (three testers). Testers were taught how to use the linac and then used the instructions to try to identify these errors. An experienced physicist observed each session, giving support on machine operation as necessary. RESULTS: Testers were able to follow the instructions. They determined gantry, collimator, and couch angle errors within 0.4°, 0.3°, and 0.9° of the actual changed values, respectively. Laser positions were determined within 1 mm and jaw positions within 2 mm. Couch position errors were determined within 2 mm and 3 mm for lateral/longitudinal and vertical errors, respectively. Accessory-positioning errors were determined within 1 mm. Optical distance indicator errors were determined within 2 mm when comparing with distance sticks and 6 mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. CONCLUSIONS: Inexperienced users were able to follow these instructions and catch errors within the criteria suggested by AAPM TG-142 for linacs used for intensity-modulated radiation therapy. These instructions are, therefore, suitable for QA training.


Asunto(s)
Aceleradores de Partículas/normas , Garantía de la Calidad de Atención de Salud/normas , Control de Calidad , Radioterapia/instrumentación , Calibración , Humanos , Fenómenos Mecánicos , Programas Informáticos
16.
J Appl Clin Med Phys ; 19(6): 306-315, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30272385

RESUMEN

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.


Asunto(s)
Braquiterapia/normas , Física Sanitaria , Neoplasias/radioterapia , Pautas de la Práctica en Medicina/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Flujo de Trabajo , Braquiterapia/métodos , Humanos , Neoplasias/diagnóstico por imagen , Aceleradores de Partículas , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Encuestas y Cuestionarios
17.
Cancer ; 123(16): 3031-3039, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28346656

RESUMEN

BACKGROUND: The authors evaluated the efficacy, patterns of failure, and toxicity of stereotactic ablative radiotherapy (SABR) for patients with medically inoperable, clinical stage I non-small cell lung cancer (NSCLC) in a prospective clinical trial with 7 years of follow-up. Clinical staging was performed according to the seventh edition of the American Joint Committee on Cancer TNM staging system. METHODS: Eligible patients with histologically confirmed NSCLC of clinical stage I as determined using positron emission tomography staging were treated with SABR (50 grays in 4 fractions). The primary endpoint was progression-free survival. Patients were followed with computed tomography and/or positron emission tomography/computed tomography every 3 months for the first 2 years, every 6 months for the next 3 years, and then annually thereafter. RESULTS: A total of 65 patients were eligible for analysis. The median age of the patients was 71 years, and the median follow-up was 7.2 years. A total of 18 patients (27.7%) developed disease recurrence at a median of 14.5 months (range, 4.3-71.5 months) after SABR. Estimated incidences of local, regional, and distant disease recurrence using competing risk analysis were 8.1%, 10.9%, and 11.0%, respectively, at 5 years and 8.1%, 13.6%, and 13.8%, respectively, at 7 years. A second primary lung carcinoma developed in 12 patients (18.5%) at a median of 35 months (range, 5-67 months) after SABR. Estimated 5-year and 7-year progression-free survival rates were 49.5% and 38.2%, respectively; the corresponding overall survival rates were 55.7% and 47.5%, respectively. Three patients (4.6%) experienced grade 3 treatment-related adverse events. No patients developed grade 4 or 5 adverse events (toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events [version 3.0]). CONCLUSIONS: With long-term follow-up, the results of the current prospective study demonstrated outstanding local control and low toxicity after SABR in patients with clinical stage I NSCLC. Regional disease recurrence and distant metastases were the dominant manifestations of failure. Surveillance for second primary lung carcinoma is recommended. Cancer 2017;123:3031-39. © 2017 American Cancer Society.


Asunto(s)
Adenocarcinoma/cirugía , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Células Escamosas/cirugía , Neoplasias Pulmonares/cirugía , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/epidemiología , Estadificación de Neoplasias , Neoplasias Primarias Secundarias/epidemiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiocirugia , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
18.
J Appl Clin Med Phys ; 18(4): 23-39, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28548315

RESUMEN

PURPOSE: The purpose of this guideline is to provide a list of critical performance tests in order to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. METHODS: A risk assessment was performed on tests from current task group reports on linac QA to highlight those tests that are most effective at maintaining safety and quality for the patient. Recommendations are made on the acquisition of reference or baseline data, the establishment of machine isocenter on a routine basis, basing performance tests on clinical use of the linac, working with vendors to establish QA tests and performing tests after maintenance. RESULTS: The recommended tests proposed in this guideline were chosen based on the results from the risk analysis and the consensus of the guideline's committee. The tests are grouped together by class of test (e.g., dosimetry, mechanical, etc.) and clinical parameter tested. Implementation notes are included for each test so that the QMP can understand the overall goal of each test. CONCLUSION: This guideline will assist the QMP in developing a comprehensive QA program for linacs in the external beam radiation therapy setting. The committee sought to prioritize tests by their implication on quality and patient safety. The QMP is ultimately responsible for implementing appropriate tests. In the spirit of the report from American Association of Physicists in Medicine Task Group 100, individual institutions are encouraged to analyze the risks involved in their own clinical practice and determine which performance tests are relevant in their own radiotherapy clinics.


Asunto(s)
Aceleradores de Partículas/normas , Control de Calidad , Sociedades Científicas/normas , Física Sanitaria/normas , Mantenimiento/normas , Radiometría
19.
J Appl Clin Med Phys ; 18(1): 223-229, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28291911

RESUMEN

Radiotherapy in a seated position may be indicated for patients who are unable to lie on the treatment couch for the duration of treatment, in scenarios where a seated treatment position provides superior anatomical positioning and dose distributions, or for a low-cost system designed using a fixed treatment beam and rotating seated patient. In this study, we report a novel treatment chair that was constructed to allow for three-dimensional imaging and treatment delivery while ensuring robust immobilization, providing reproducibility equivalent to that in the traditional supine position. Five patients undergoing radiation treatment for head-and-neck cancers were enrolled and were setup in the chair, with immobilization devices created, and then imaged with orthogonal X-rays in a scenario that mimicked radiation treatments (without treatment delivery). Six subregions of the acquired images were rigidly registered to evaluate intra- and interfraction displacement and chair construction. Displacements under conditions of simulated image guidance were acquired by first registering one subregion; the residual displacement of other subregions was then measured. Additionally, we administered a patient questionnaire to gain patient feedback and assess comparison to the supine position. Average inter- and intrafraction displacements of all subregions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, L-R and A-P interfraction displacements were reduced by an average of 1 mm, providing setup of comparable quality to supine setups. The enrolled patients, who had no indication for a seated treatment position, reported no preference in the seated or the supine position. The novel chair design provides acceptable inter- and intrafraction displacement, with reproducibility equivalent to that reported for patients in the supine position. Patient feedback will be incorporated in the refinement of the chair, facilitating treatment of head-and-neck cancer in patients who are unable to lie for the duration of treatment or for use in an economical fixed-beam setup.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Inmovilización/instrumentación , Posicionamiento del Paciente/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control , Anciano , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
20.
J Appl Clin Med Phys ; 17(6): 242-253, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929497

RESUMEN

In extension of a previous study, we compared several photon beam energy metrics to determine which was the most sensitive to energy change; in addition to those, we accounted for both the sensitivity of each metric and the uncertainty in determining that metric for both traditional flattening filter (FF) beams (4, 6, 8, and 10 MV) and for flattening filter-free (FFF) beams (6 and 10 MV) on a Varian TrueBeam. We examined changes in these energy metrics when photon energies were changed to ± 5% and ± 10% from their nominal energies: 1) an attenuation-based metric (the percent depth dose at 10 cm depth, PDD(10)) and, 2) profile-based metrics, including flatness (Flat) and off-axis ratios (OARs) measured on the orthogonal axes or on the diagonals (diagonal normalized flatness, FDN). Profile-based metrics were measured near dmax and also near 10 cm depth in water (using a 3D scanner) and with ioniza-tion chamber array (ICA). PDD(10) was measured only in water. Changes in PDD, OAR, and FDN were nearly linear to the changes in the bend magnet current (BMI) over the range from -10% to +10% for both FF and FFF beams: a ± 10% change in energy resulted in a ± 1.5% change in PDD(10) for both FF and FFF beams, and changes in OAR and FDN were > 3.0% for FF beams and > 2.2% for FFF beams. The uncertainty in determining PDD(10) was estimated to be 0.15% and that for OAR and FDN about 0.07%. This resulted in minimally detectable changes in energy of 2.5% for PDD(10) and 0.5% for OAR and FDN. We found that the OAR- or FDN- based metrics were the best for detecting energy changes for both FF and FFF beams. The ability of the OAR-based metrics determined with a water scanner to detect energy changes was equivalent to that using an ionization chamber array. We recommend that OAR be measured either on the orthogonal axes or the diagonals, using an ionization chamber array near the depth of maximum dose, as a sensitive and efficient way to confirm stability of photon beam energy.


Asunto(s)
Filtración/instrumentación , Aceleradores de Partículas/instrumentación , Fotones , Radiometría/instrumentación , Radiometría/métodos , Transferencia de Energía , Humanos , Dosis de Radiación , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA