Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
2.
PLoS Genet ; 9(2): e1003305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437009

RESUMEN

In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.


Asunto(s)
Empalme Alternativo/genética , Ciclo Celular/genética , ARN Mensajero , Proteínas de Unión al ARN , Toxoplasma , Secuencia Conservada/genética , Fase G1/genética , Regulación de la Expresión Génica , Humanos , Mutación , Motivos de Nucleótidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Toxoplasma/genética , Toxoplasma/metabolismo
3.
Eukaryot Cell ; 12(9): 1171-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813392

RESUMEN

Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression in P. falciparum.


Asunto(s)
Merozoítos/crecimiento & desarrollo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Mitosis , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Fase S , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Ectima Contagioso , Genes Protozoarios , Merozoítos/enzimología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
4.
Eukaryot Cell ; 10(9): 1257-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21803864

RESUMEN

Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.


Asunto(s)
Eritrocitos/parasitología , Eliminación de Gen , Expresión Génica , Interacciones Huésped-Parásitos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Factores de Transcripción/genética , Animales , Proliferación Celular , Eritrocitos/patología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Merozoítos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Plasmodium falciparum/crecimiento & desarrollo , Factores de Transcripción/metabolismo
5.
PLoS Pathog ; 4(8): e1000118, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18688278

RESUMEN

Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'. Here, we combined bioinformatics and genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen in the host cell. Our approach may be generalized to the analysis of hundreds of 'hypothetical' P. falciparum proteins to understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host-microbial interactions for prophylaxis against this major human pathogen.


Asunto(s)
Eritrocitos/metabolismo , Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Transporte Biológico/genética , Eritrocitos/parasitología , Regulación de la Expresión Génica/genética , Genoma de Protozoos/genética , Humanos , Membranas Intracelulares/parasitología , Metabolismo de los Lípidos/genética , Lípidos/genética , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
6.
PLoS Pathog ; 4(6): e1000084, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18551176

RESUMEN

The malaria agent Plasmodium falciparum is predicted to export a "secretome" of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of approximately 70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed approximately 75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen.


Asunto(s)
Algoritmos , Plasmodium falciparum/patogenicidad , Señales de Clasificación de Proteína , Proteínas Protozoarias/metabolismo , Animales , Secuencia Conservada , Eritrocitos/parasitología , Genómica/métodos , Humanos , Malaria , Plasmodium falciparum/química , Transporte de Proteínas , Proteínas Protozoarias/genética , Roedores
7.
BMC Microbiol ; 9: 83, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19422698

RESUMEN

BACKGROUND: Much of the Plasmodium falciparum genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the Plasmodium genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the Plasmodium genome. RESULTS: In this study, we investigated the lepidopteran transposon, piggyBac, as a molecular genetic tool for functional characterization of the Plasmodium falciparum genome. Through multiple transfections, we generated 177 unique P. falciparum mutant clones with mostly single piggyBac insertions in their genomes. Analysis of piggyBac insertion sites revealed random insertions into the P. falciparum genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in P. falciparum with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development. CONCLUSION: Our results clearly demonstrate that piggyBac is a novel, indispensable tool for forward functional genomics in P. falciparum that will help better understand parasite biology and accelerate drug and vaccine development.


Asunto(s)
Elementos Transponibles de ADN , Genoma de Protozoos , Genómica/métodos , Plasmodium falciparum/genética , Animales , Mutagénesis Insercional , Plásmidos , Plasmodium falciparum/crecimiento & desarrollo , Transfección
8.
Exp Parasitol ; 121(1): 110-4, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18950624

RESUMEN

Strict regulation of gene expression is critical for the development of the malaria parasite within multiple host cell types. However, much remains unexplored regarding gene regulation in Plasmodium falciparum with only a few components of the gene regulation machinery identified thus far. Better characterization of transcript structures with precise mapping of transcript ends will greatly aid in the search of conserved regulatory sequences in the genome. Transcript analysis of maebl, a member of the ebl gene family, in P. falciparum intra-erythrocytic stages has revealed a unique transcript structure for maebl. The 5'-untranslated region of maebl transcript is exceptionally long (>2 kb) with a small multi-exon open reading frame, annotated as a putative mitochondrial ATP synthase (PF11_0485) in the Plasmodium database. Northern blot hybridizations and RT-PCR analysis confirmed a bicistronic message for maebl along with PF11_0485. We further identified the minimal maebl promoter to be upstream of PF11_0485 by using transient chloramphenicol acetyl transferase (CAT) reporter assays. The occurrence of a bicistronic mRNA in Plasmodium is both novel and unusual for a lower eukaryote and adds on to the complexity of gene regulation in malaria parasites.


Asunto(s)
Plasmodium falciparum/genética , Proteínas Protozoarias/química , Receptores de Superficie Celular/química , Transcripción Genética , Animales , Northern Blotting , Clonación Molecular , Cartilla de ADN/química , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Eritrocitos/parasitología , Humanos , Plasmodium falciparum/química , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , ARN Protozoario/química , ARN Protozoario/aislamiento & purificación , Técnica del ADN Polimorfo Amplificado Aleatorio , Receptores de Superficie Celular/genética
9.
Malar J ; 7: 222, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18959784

RESUMEN

BACKGROUND: Cloning of parasites by limiting dilution is an essential and rate-limiting step in many aspects of malaria research including genomic and genetic manipulation studies. The standard Giemsa-stained blood smears to detect parasites is time-consuming, whereas the more sensitive parasite lactate dehydrogenase assay involves multiple steps and requires fresh reagents. A simple PCR-based method was therefore tested for parasite detection that can be adapted to high throughput studies. METHODS: Approximately 1 microL of packed erythrocytes from each well of a microtiter cloning plate was directly used as template DNA for a PCR reaction with primers for the parasite 18s rRNA gene. Positive wells containing parasites were identified after rapid separation of PCR products by gel electrophoresis. RESULTS: The PCR-based method can consistently detect a parasitaemia as low as 0.0005%, which is equivalent to 30 parasite genomes in a single well of a 96-well plate. Parasite clones were easily detected from cloning plates using this method and a comparison of PCR results with Giemsa-stained blood smears showed that PCR not only detected all the positive wells identified in smears, but also detected wells not identified otherwise, thereby confirming its sensitivity. CONCLUSION: The PCR-based method reported here is a simple, sensitive and efficient method for detecting parasite clones in culture. This method requires very little manual labor and can be completely automated for high throughput studies. The method is sensitive enough to detect parasites a week before they can be seen in Giemsa smears and is highly effective in identifying slow growing parasite clones.


Asunto(s)
Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Colorantes Azulados , Células Clonales , Plasmodium falciparum/aislamiento & purificación , ARN Ribosómico 18S/genética , Sensibilidad y Especificidad
10.
Int J Dermatol ; 62(9): e484-e486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36841896
11.
Int J Parasitol ; 37(1): 1-10, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17113093

RESUMEN

Malaria is a global problem that affects millions of people annually. A relatively poor understanding of the malaria parasite biology has hindered vaccine and drug development against this disease. Robust methods for genetic analyses in Plasmodium have been lacking due to the difficulties in its genetic manipulation. Introduction of transfection technologies laid the foundation for genetic dissection of Plasmodium and recent years have seen the development of novel tools for genetic manipulation that will help us delineate the intriguing biology of this parasite. This review focuses on such recent advances in transfection technologies for Plasmodium that have improved our ability to carry out more thorough genetic analyses of the biology of the malaria parasite.


Asunto(s)
Plasmodium/genética , Transfección/métodos , Animales , Elementos Transponibles de ADN/genética , ADN Protozoario/genética , Expresión Génica/genética , Genes Protozoarios/genética , Marcadores Genéticos/genética , Humanos , Malaria/genética , Mutagénesis/genética , Plasmodium berghei/genética , Plasmodium falciparum/genética , Transgenes/genética
14.
J Mol Biol ; 343(3): 589-99, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15465047

RESUMEN

Genes of malaria parasites and other unicellular organisms have larger exons with fewer and smaller introns than metaozoans. Such differences in gene structure are perceived to extend to simpler mechanisms for transcriptional control and mRNA processing. Instead, we discovered a surprisingly complex level of post-transcriptional mRNA processing in analysis of maebl transcripts in several Plasmodium species. Mechanisms for internal alternative cis-splicing and exon skipping were active in multiple life cycle stages to change exon structure in the deduced coding sequence (CDS). The major alternatively spliced transcript utilized a less favorable acceptor splice site, which shifted codon triplet usage to a different CDS with a hydrophilic C terminus, changing the canonical type I membrane MAEBL product to a predicted soluble isoform. We found that developmental control of the alternative splicing pattern was distinct from the canonical splicing pattern. Western blot analysis indicated that MAEBL expression was better correlated with the appearance of the canonical ORF1 transcript. Together these data reveal that RNA metabolism in unicellular eukaryotes like Plasmodium is more sophisticated than believed and may have a significant role regulating gene expression in Plasmodium.


Asunto(s)
Empalme Alternativo , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium yoelii/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Protozoario/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Codón , Exones , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Plasmodium yoelii/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/genética , Alineación de Secuencia
15.
Sci Rep ; 5: 15930, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541648

RESUMEN

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs' mechanisms of action. A mutant of the artemisinin resistance candidate gene - "K13-propeller" gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Descubrimiento de Drogas/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Mutagénesis Insercional/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
16.
Mol Biochem Parasitol ; 122(1): 35-44, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12076768

RESUMEN

Malaria is one of the deadliest human diseases and efforts to control it have been difficult due to the protozoan parasites' complex biology. Malaria merozoite invasion of erythrocytes is an essential part of blood-stage infections. The invasion process is mediated by numerous parasite molecules, such as EBA-175, a member of the ebl family of erythrocyte binding proteins. We have identified maebl, an ebl paralogue, in Plasmodium falciparum and found it highly conserved with its orthologues in P. yoelii and P. berghei, but distinct from other Plasmodium ebl. Importantly, the putative MAEBL ligand domains are highly conserved and are similar to AMA-1, but not the consensus DBL ligand domains present in all other ebl. In mature merozoites, MAEBL localized with rhoptry proteins (RhopH2, RAP-1), including surface localization with RhopH2, but not microneme proteins (EBA-175, BAEBL). MAEBL appears as proteolytically processed fragments in P. falciparum parasites. The amino cysteine-rich ligand domains were present primarily in culture supernatants, while the carboxyl cysteine-rich domain adjacent to the transmembrane domain was preferentially isolated from Triton X-100 extracted fractions. These data indicate that the primary structure of maebl is highly conserved among Plasmodium species, while its characteristics demonstrate a function unique among the ebl proteins.


Asunto(s)
Antígenos de Protozoos , Proteínas Portadoras/análisis , Proteínas Portadoras/química , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas Protozoarias , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido
18.
J Trop Med ; 2012: 829210, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22649460

RESUMEN

The genome sequence of the human malaria parasite, Plasmodium falciparum, was released almost a decade ago. A majority of the Plasmodium genome, however, remains annotated to code for hypothetical proteins with unknown functions. The introduction of forward genetics has provided novel means to gain a better understanding of gene functions and their associated phenotypes in Plasmodium. Even with certain limitations, the technique has already shown significant promise to increase our understanding of parasite biology needed for rationalized drug and vaccine design. Further improvements to the mutagenesis technique and the design of novel genetic screens should lead us to some exciting discoveries about the critical weaknesses of Plasmodium, and greatly aid in the development of new disease intervention strategies.

19.
PLoS One ; 7(7): e40416, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792308

RESUMEN

Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.


Asunto(s)
Plasmodium falciparum/genética , Plasmodium vivax/enzimología , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Timidilato Sintasa/genética , Sustitución de Aminoácidos , Antimaláricos/farmacología , Células Cultivadas , Resistencia a Medicamentos , Eritrocitos/parasitología , Antagonistas del Ácido Fólico/farmacología , Dosificación de Gen , Humanos , Concentración 50 Inhibidora , Mutagénesis Insercional , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/genética , Proguanil/farmacología , Proteínas Protozoarias/biosíntesis , Pirimetamina/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Tetrahidrofolato Deshidrogenasa/biosíntesis , Timidilato Sintasa/biosíntesis , Transfección , Triazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA