Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 87(4): 403-19, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27144898

RESUMEN

Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping.


Asunto(s)
Basidiomycota/fisiología , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Enfermedades de las Plantas/inmunología , Triticum/genética , Brachypodium/genética , Diploidia , Marcadores Genéticos/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Análisis de Secuencia de ADN , Sintenía , Triticum/inmunología , Triticum/microbiología
2.
Theor Appl Genet ; 128(12): 2447-60, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26340982

RESUMEN

KEY MESSAGE: Four QTL conferring resistance to ergot were identified in the UK winter wheat varieties 'Robigus' and 'Solstice'. Two QTL co-located with semi-dwarfing alleles at the Rht loci Rht - 1B and Rht - 1D implicating a role of these DELLA proteins in infection success of Claviceps purpurea. The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties 'Robigus' and 'Solstice' were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety 'Robigus', and QCp.niab.6A and QCp.niab.4D in the variety 'Solstice'. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from 'Robigus' and Rht-D1b from 'Solstice'. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Ascomicetos , Mapeo Cromosómico , Cruzamientos Genéticos , Genotipo , Haploidia , Fenotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
3.
PLoS One ; 15(4): e0231157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294096

RESUMEN

We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Triticum/genética , Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Haplotipos/genética , Haplotipos/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/microbiología
4.
G3 (Bethesda) ; 4(9): 1603-10, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25237112

RESUMEN

MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.


Asunto(s)
Triticum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Resistencia a la Enfermedad , Flores/fisiología , Frecuencia de los Genes , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Plantones/genética , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA