RESUMEN
We highlight Martinez-Miguel et al. (2021), which demonstrates that an amino acid substitution in RPS23 found in thermophilic archaea contributes to increased translation fidelity, lifespan, and stress response but slows development and reproduction in other organisms.
Asunto(s)
Longevidad , Reproducción , Longevidad/genéticaRESUMEN
Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.
Asunto(s)
Envejecimiento , Enfermedades del Sistema Nervioso , Humanos , Femenino , Envejecimiento/genética , Longevidad/genética , Neuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo , Restricción Calórica , Proteínas Mitocondriales/metabolismoRESUMEN
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
RESUMEN
Mucopolysaccharidosis type VII (MPS VII) is a recessively inherited lysosomal storage disorder caused due to ß-glucuronidase (ß-GUS) enzyme deficiency. Prominent clinical symptoms include hydrops fetalis, musculoskeletal deformities, neurodegeneration and hepatosplenomegaly leading to premature death in most cases. Apart from these, MPS VII is also characterized as adipose storage deficiency disorder although the underlying mechanism of this lean phenotype in the patients or ß-GUS-deficient mice still remains a mystery. We addressed this issue using our recently developed Drosophila model of MPS VII (the CG2135-/- fly), which also exhibited a significant loss of body fat. We report here that the lean phenotype of the CG2135-/- larvae is due to fewer number of adipocytes, smaller lipid droplets and reduced adipogenesis. Our data further revealed that there is an abnormal accumulation of autophagosomes in the CG2135-/- larvae due to autophagosome-lysosome fusion defect. Decreased lysosome-mediated turnover also led to attenuated mTOR activity in the CG2135-/- larvae. Interestingly, treatment of the CG2135-/- larvae with mTOR stimulators, 3BDO or glucose, led to the restoration of mTOR activity with simultaneous correction of the autophagy defect and adipose storage deficiency. Our finding thus established a hitherto unknown mechanistic link between autophagy dysfunction, mTOR downregulation and reduced adiposity in MPS VII.
Asunto(s)
Mucopolisacaridosis VII , Tejido Adiposo , Animales , Autofagia , Drosophila , Humanos , Ratones , Mucopolisacaridosis VII/genética , Mucopolisacaridosis VII/terapia , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Many vital processes in the eye are under circadian regulation, and circadian dysfunction has emerged as a potential driver of eye aging. Dietary restriction is one of the most robust lifespan-extending therapies and amplifies circadian rhythms with age. Herein, we demonstrate that dietary restriction extends lifespan in Drosophila melanogaster by promoting circadian homeostatic processes that protect the visual system from age- and light-associated damage. Altering the positive limb core molecular clock transcription factor, CLOCK, or CLOCK-output genes, accelerates visual senescence, induces a systemic immune response, and shortens lifespan. Flies subjected to dietary restriction are protected from the lifespan-shortening effects of photoreceptor activation. Inversely, photoreceptor inactivation, achieved via mutating rhodopsin or housing flies in constant darkness, primarily extends the lifespan of flies reared on a high-nutrient diet. Our findings establish the eye as a diet-sensitive modulator of lifespan and indicates that vision is an antagonistically pleiotropic process that contributes to organismal aging.
Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ojo , Animales , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Longevidad/genética , Factores de Transcripción/genéticaRESUMEN
Dietary restriction (DR) extends healthy lifespan in diverse species. Age and nutrient-related changes in the abundance of microRNAs (miRNAs) and their processing factors have been linked to organismal longevity. However, the mechanisms by which they modulate lifespan and the tissue-specific role of miRNA-mediated networks in DR-dependent enhancement of lifespan remains largely unexplored. We show that two neuronally enriched and highly conserved microRNAs, miR-125 and let-7 mediate the DR response in Drosophila melanogaster. Functional characterization of miR-125 demonstrates its role in neurons while its target chinmo acts both in neurons and the fat body to modulate fat metabolism and longevity. Proteomic analysis revealed that Chinmo exerts its DR effects by regulating the expression of FATP, CG2017, CG9577, CG17554, CG5009, CG8778, CG9527, and FASN1. Our findings identify miR-125 as a conserved effector of the DR pathway and open the avenue for this small RNA molecule and its downstream effectors to be considered as potential drug candidates for the treatment of late-onset diseases and biomarkers for healthy aging in humans.
Asunto(s)
Restricción Calórica , Proteínas de Drosophila/metabolismo , Longevidad/fisiología , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Línea Celular , Drosophila , Proteínas de Drosophila/análisis , Proteínas de Drosophila/química , Embrión no Mamífero , Femenino , Transducción de Señal/fisiologíaRESUMEN
Mucopolysaccharidosis VII (MPS VII) is a recessively inherited lysosomal storage disorder caused by ß-glucuronidase enzyme deficiency. The disease is characterized by widespread accumulation of non-degraded or partially degraded glycosaminoglycans, leading to cellular and multiple tissue dysfunctions. The patients exhibit diverse clinical symptoms, and eventually succumb to premature death. The only possible remedy is the recently approved enzyme replacement therapy, which is an expensive, invasive and lifelong treatment procedure. Small-molecule therapeutics for MPS VII have so far remained elusive primarily due to lack of molecular insights into the disease pathogenesis and unavailability of a suitable animal model that can be used for rapid drug screening. To address these issues, we developed a Drosophila model of MPS VII by knocking out the CG2135 gene, the fly ß-glucuronidase orthologue. The CG2135-/- fly recapitulated cardinal features of MPS VII, such as reduced lifespan, progressive motor impairment and neuropathological abnormalities. Loss of dopaminergic neurons and muscle degeneration due to extensive apoptosis was implicated as the basis of locomotor deficit in this fly. Such hitherto unknown mechanistic links have considerably advanced our understanding of the MPS VII pathophysiology and warrant leveraging this genetically tractable model for deeper enquiry about the disease progression. We were also prompted to test whether phenotypic abnormalities in the CG2135-/- fly can be attenuated by resveratrol, a natural polyphenol with potential health benefits. Indeed, resveratrol treatment significantly ameliorated neuromuscular pathology and restored normal motor function in the CG2135-/- fly. This intriguing finding merits further preclinical studies for developing an alternative therapy for MPS VII.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Drosophila melanogaster/metabolismo , Actividad Motora , Mucopolisacaridosis VII/tratamiento farmacológico , Mucopolisacaridosis VII/fisiopatología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Resveratrol/uso terapéutico , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Marcación de Gen , Glucuronidasa/química , Glucuronidasa/metabolismo , Humanos , Actividad Motora/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Fenotipo , Resveratrol/farmacologíaRESUMEN
Aging is a complex biological process and environmental risk factors like pesticide exposure have been implicated in the increased incidence of age-related neurodegenerative diseases like Parkinson's disease (PD) but the etiology remains unknown. There is also lack of a proper animal model system to study the progressive effect of these environmental toxins on age-associated neurodegeneration. In this study, we established a drosophila model of aging to study the age-dependent vulnerability to the environmental toxin rotenone that has been implicated in sporadic cases of PD. We demonstrate that age plays a determining role in the increased susceptibility to chronic rotenone exposure that is accompanied by severe locomotor deficits, decreased lifespan and loss of dopaminergic (DA) neurons. Chronic low dose exposure to rotenone results in the rapid induction of the neurodegenerative molecule SARM1/dSarm. Further, the age-dependent dSarm induction is accompanied by a heightened inflammatory response (increased expression of Eiger and Relish) that is independent of reactive oxygen species (ROS) generation in the observed rotenone-induced neurotoxicity. dSarm induction and subsequent locomotor deficits is reversed in the presence of the anti-inflammatory molecule resveratrol. Thus, dSarm and heightened inflammatory responses may play a crucial role in age-dependent vulnerability to the pesticide rotenone thus making it an attractive target to help develop cost-effective therapeutic strategies to prevent ongoing dopaminergic neuronal loss as seen in PD.