Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Europace ; 23(7): 1124-1133, 2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34009333

RESUMEN

AIMS: Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic. Many clinical trials have been initiated to fight the disease. Among those, hydroxychloroquine and azithromycin had initially been suggested to improve clinical outcomes. Despite any demonstrated beneficial effects, they are still in use in some countries but have been reported to prolong the QT interval and induce life-threatening arrhythmia. Since a significant proportion of the world population may be treated with such COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed. METHODS AND RESULTS: Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-19 patients in addition to hydroxychloroquine (HCQ) and azithromycin (AZM) such as tachycardia, hypokalaemia, and subclinical to mild long QT syndrome. Hydroxychloroquine and AZM drugs have little impact on QT duration and do not induce any substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model predicts larger electrocardiogram impairments, as with dofetilide. In subclinical conditions, the model suggests that mexiletine limits the deleterious effects of AZM and HCQ. CONCLUSION: By studying the HCQ and AZM co-administration case, we show that the easy-to-use O'Hara-Rudy model can be applied to assess the QT-prolongation potential of off-label drugs, beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de QT Prolongado , Azitromicina/efectos adversos , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Humanos , Hidroxicloroquina/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , SARS-CoV-2
2.
Europace ; 23(3): 441-450, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33200177

RESUMEN

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Asunto(s)
Infanticidio , Taquicardia Ventricular , Arritmias Cardíacas , Australia , Niño , Preescolar , Muerte Súbita Cardíaca/etiología , Femenino , Humanos , Lactante , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
3.
Pharmacol Res ; 159: 104922, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32464326

RESUMEN

Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-ß pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-ß canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.


Asunto(s)
Benzamidas/farmacología , Cardiomiopatías/prevención & control , Conexina 43/metabolismo , Fibroblastos/efectos de los fármacos , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Prolina/análogos & derivados , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ratones de la Cepa 129 , Ratones Noqueados , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación , Prolina/farmacología , Pirazoles/farmacología , Transducción de Señal , Regulación hacia Arriba , Remodelación Ventricular/efectos de los fármacos
4.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114854

RESUMEN

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiología
5.
J Mol Cell Cardiol ; 123: 13-25, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144447

RESUMEN

AIM: Deletion of QKP1507-1509 amino-acids in SCN5A gene product, the voltage-gated Na+ channel Nav1.5, has been associated with a large phenotypic spectrum of type 3 long QT syndrome, conduction disorder, dilated cardiomyopathy and high incidence of sudden death. The aim of this study was to develop and characterize a novel model of type 3 long QT syndrome to study the consequences of the QKP1507-1509 deletion. METHODS AND RESULTS: We generated a knock-in mouse presenting the delQKP1510-1512 mutation (Scn5a+/ΔQKP) equivalent to human deletion. Scn5a+/ΔQKP mice showed prolonged QT interval, conduction defects and ventricular arrhythmias at the age of 2 weeks, and, subsequently, structural defects and premature mortality. The mutation increased Na+ window current and generated a late Na+ current. Ventricular action potentials from Scn5a+/ΔQKP mice were prolonged. At the age of 4 weeks, Scn5a+/ΔQKP mice exhibited a remodeling leading to [Ca2+]i transients with higher amplitude and slower kinetics, combined with enhanced SR Ca2+ load. SERCA2 expression was not altered. However, total phospholamban expression was higher whereas the amount of Ca2+-calmodulin-dependent kinase II (CaMKII)-dependent T17-phosphorylated form was lower, in hearts from 4-week-old mice only. This was associated with a lower activity of CaMKII and lower calmodulin expression. In addition, Scn5a+/ΔQKP cardiomyocytes showed larger Ca2+ waves, correlated with the presence of afterdepolarizations during action potential recording. Ranolazine partially prevented action potential and QT interval prolongation in 4-week-old Scn5a+/ΔQKP mice and suppressed arrhythmias. CONCLUSION: The Scn5a+/ΔQKP mouse model recapitulates the clinical phenotype of mutation carriers and provides new and unexpected insights into the pathological development of the disease in patients carrying the QKP1507-1509 deletion.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/metabolismo , Potenciales de Acción , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía , Electrocardiografía , Pruebas de Función Cardíaca , Inmunohistoquímica , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/tratamiento farmacológico , Ratones , Ratones Noqueados , Imagen Molecular , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fenotipo , Propranolol/farmacología , Transducción de Señal , Tasa de Supervivencia
6.
J Mol Cell Cardiol ; 99: 1-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27590098

RESUMEN

Patients with HIV present with a higher prevalence of QT prolongation, of which molecular bases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulates viral genes expression and is required for efficient HIV replication. Tat is actively secreted into the blood by infected T-cells and affects organs such as the heart. Tat has been shown to alter cardiac repolarization in animal models but how this is mediated and whether this is also the case in human cells is unknown. In the present study, we show that Tat transfection in heterologous expression systems led to a decrease in hERG (underlying cardiac IKr) and human KCNE1-KCNQ1 (underlying cardiac IKs) currents and to an acceleration of their deactivation. This is consistent with a decrease in available phosphatidylinositol-(4,5)-bisphosphate (PIP2). A mutant Tat, unable to bind PIP2, did not reproduce the observed effects. In addition, WT-Tat had no effect on a mutant KCNQ1 which is PIP2-insensitive, further confirming the hypothesis. Twenty-four-hour incubation of human induced pluripotent stem cells-derived cardiomyocytes with Wild-type Tat reduced IKr and accelerated its deactivation. Concordantly, this Tat incubation led to a prolongation of the action potential (AP) duration. Events of AP alternans were also recorded in the presence of Tat, and were exacerbated at a low pacing cycle length. Altogether, these data obtained on human K+ channels both in heterologous expression systems and in human cardiomyocytes suggest that Tat sequesters PIP2, leading to a reduction of IKr and IKs, and provide a molecular mechanism for QT prolongation in HIV-infected patients.


Asunto(s)
Potenciales de Acción , Fosfatidilinositol 4,5-Difosfato/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Células COS , Diferenciación Celular , Línea Celular , Canal de Potasio ERG1/metabolismo , Fenómenos Electrofisiológicos , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
7.
Basic Res Cardiol ; 109(6): 446, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25341504

RESUMEN

Brugada syndrome (BrS) is characterized by ST-segment elevation in the right precordial leads and is associated with increased risk of sudden cardiac death. We have recently reported families with BrS and SCN5A mutations where some affected members do not carry the familial mutation. We evaluated the involvement of additional genetic determinants for BrS in an affected family. We identified three distinct gene variants within a family presenting BrS (5 individuals), cardiac conduction defects (CCD, 3 individuals) and shortened QT interval (4 individuals). The first mutation is nonsense, p.Q1695*, lying within the SCN5A gene, which encodes for NaV1.5, the α-subunit of the cardiac Na(+) channel. The second mutation is missense, p.N300D, and alters the CACNA1C gene, which encodes the α-subunit CaV1.2 of the L-type cardiac Ca(2+) channel. The SCN5A mutation strictly segregates with CCD. Four out of the 5 BrS patients carry the CACNA1C variant, and three of them present shortened QT interval. One of the BrS patients carries none of these mutations but a rare variant located in the ABCC9 gene as well as his asymptomatic mother. Patch-clamp studies identified a loss-of-function of the mutated CaV1.2 channel. Western-blot experiments showed a global expression defect while increased mobility of CaV1.2 channels on cell surface was revealed by FRAP experiments. Finally, computer simulations of the two mutations recapitulated patient phenotypes. We report a rare CACNA1C mutation as causing BrS and/or shortened QT interval in a family also carrying a SCN5A stop mutation, but which does not segregate with BrS. This study underlies the complexity of BrS inheritance and its pre-symptomatic genetic screening interpretation.


Asunto(s)
Síndrome de Brugada/genética , Canales de Calcio Tipo L/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Anciano de 80 o más Años , Animales , Células COS , Chlorocebus aethiops , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
8.
J Biol Chem ; 287(43): 36158-67, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22932893

RESUMEN

Phosphatidylinositol (4,5)-bisphosphate (PIP(2)) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP(2) on the open state stabilization. A similar effect of PIP(2) on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K(+) channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP(2) effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP(2) exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Células COS , Chlorocebus aethiops , Canal de Potasio KCNQ1/genética , Fosfatidilinositol 4,5-Difosfato/genética , Canales de Potasio de la Superfamilia Shaker/genética , Xenopus
9.
Cells ; 12(11)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37296595

RESUMEN

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Cricetulus , Membrana Celular , Células CHO
10.
J Biol Chem ; 286(1): 707-16, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20940310

RESUMEN

Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.


Asunto(s)
Conductividad Eléctrica , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fragmentos de Péptidos/metabolismo , Porosidad , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
11.
Sci Rep ; 11(1): 3282, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558601

RESUMEN

The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose-response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.


Asunto(s)
Canales Iónicos/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Ratones , Técnicas de Placa-Clamp
12.
Clin Transl Med ; 11(11): e609, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34841674

RESUMEN

BACKGROUND AND AIMS: Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS: We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS: In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS: Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.


Asunto(s)
Arritmias Cardíacas/genética , Canal de Potasio ERG1/genética , Síndrome de QT Prolongado/genética , Potenciales de Acción/genética , Humanos , Regulador Transcripcional ERG/genética , Virulencia/efectos de los fármacos
13.
Biophys J ; 99(4): 1110-8, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20712994

RESUMEN

Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a phospholipid that has been shown to modulate several ion channels, including some voltage-gated channels like Kv11.1 (hERG). From a biophysical perspective, the mechanisms underlying this regulation are not well characterized. From a physiological perspective, it is critical to establish whether the PIP(2) effect is within the physiological concentration range. Using the giant-patch configuration of the patch-clamp technique on COS-7 cells expressing hERG, we confirmed the activating effect of PIP(2). PIP(2) increased the hERG maximal current and concomitantly slowed deactivation. Regarding the molecular mechanism, these increased amplitude and slowed deactivation suggest that PIP(2) stabilizes the channel open state, as it does in KCNE1-KCNQ1. We used kinetic models of hERG to simulate the effects of the phosphoinositide. Simulations strengthened the hypothesis that PIP(2) is more likely stabilizing the channel open state than affecting the voltage sensors. From the physiological aspect, we established that the sensitivity of hERG to PIP(2) comes close to that of KCNE1-KCNQ1 channels, which lies in the range of physiological PIP(2) variations.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/farmacología , Animales , Células COS , Chlorocebus aethiops , Canal de Potasio ERG1 , Humanos , Canal de Potasio KCNQ1/metabolismo , Cinética , Magnesio/farmacología , Modelos Biológicos , Polilisina/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica/efectos de los fármacos , Transfección
14.
J Mol Cell Cardiol ; 48(1): 37-44, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19683534

RESUMEN

The two components of the cardiac delayed rectifier current have been the subject of numerous studies since firstly described. This current controls the action potential duration and is highly regulated. After identification of the channel subunits underlying IKs, KCNQ1 associated with KCNE1, and IKr, HERG, their involvement in human cardiac channelopathies have provided various models allowing the description of the molecular mechanisms of the KCNQ1 and HERG channels trafficking, activity and regulation. More recently, studies have been focusing on the unveiling of different partners of the pore-forming proteins that contribute to their maturation, trafficking, activity and/or degradation, on one side, and on their respective expression in the heterogeneous cardiac tissue, on the other side. The aim of this review is to report and discuss the major works on IKs and IKr and the most recent ones that help to understand the precise function of these currents in the heart.


Asunto(s)
Miocardio/metabolismo , Miocardio/patología , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/genética
15.
J Physiol ; 588(Pt 18): 3471-83, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20660559

RESUMEN

KCNQ1 osmosensitivity is of physiological and pathophysiological relevance in epithelial and cardiac cells, but the mechanism involved remains elusive. In COS-7 cells expressing the KCNE1-KCNQ1 fusion protein, extracellular hypoosmolarity and hyperosmolarity modify the channel biophysical parameters. These changes are consistent with hypoosmolarity increasing the level of membrane phosphatidylinositol-4,5-bisphosphate (PIP(2)), which in turn upregulates KCNE1-KCNQ1 channels. We showed that increasing PIP(2) levels with a water-soluble PIP(2) analogue prevented channel upregulation in hypoosmotic condition, suggesting a variation of the channel-PIP(2) interaction during channel osmoregulation. Furthermore, we showed that polyamines and Mg(2+), already known to tonically inhibit KCNQ channels by screening PIP(2) negative charges, are involved in the osmoregulatory process. Indeed, intracellular Mg(2+) removal and polyamines chelation inhibited the channel osmoregulation. Thus, the dilution of those cations during cell swelling might decrease channel inhibition and explain the channel upregulation by hypoosmolarity. To support this idea, we quantified the role of Mg(2+) in the osmodependent channel activity. Direct measurement of intracellular [Mg(2+)] variations during osmotic changes and characterization of the channel Mg(2+) sensitivity showed that Mg(2+) participates significantly to the osmoregulation. Using intracellular solutions that mimic the variation of Mg(2+) and polyamines, we were able to recapitulate the current amplitude variations in response to extracellular osmolarity changes. Altogether, these results support the idea of a modulation of the channel-PIP(2) interactions by Mg(2+) and polyamines during cell volume changes. It is likely that this mechanism applies to other channels that are sensitive to both osmolarity and PIP(2).


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Magnesio/metabolismo , Poliaminas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Fenómenos Biomecánicos , Células COS , Membrana Celular , Chlorocebus aethiops , Citoesqueleto , Regulación de la Expresión Génica/fisiología , Concentración Osmolar , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Recombinantes
16.
Biophys J ; 97(5): 1323-34, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19720020

RESUMEN

Studies in Shaker, a voltage-dependent potassium channel, suggest a coupling between activation and inactivation. This coupling is controversial in hERG, a fast-inactivating voltage-dependent potassium channel. To address this question, we transferred to hERG the S3-S4 linker of the voltage-independent channel, rolf, to selectively disrupt the activation process. This chimera shows an intact voltage-dependent inactivation process consistent with a weak coupling, if any, between both processes. Kinetic models suggest that the chimera presents only an open and an inactivated states, with identical transition rates as in hERG. The lower sensitivity of the chimera to BeKm-1, a hERG preferential closed-state inhibitor, also suggests that the chimera presents mainly open and inactivated conformations. This chimera allows determining the mechanism of action of hERG blockers, as exemplified by the test on ketoconazole.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico , Análisis de Varianza , Animales , Células COS , Chlorocebus aethiops , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cetoconazol/farmacología , Cinética , Potenciales de la Membrana , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Venenos de Escorpión/farmacología
17.
Cardiovasc Res ; 79(3): 427-35, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18390900

RESUMEN

AIMS: KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS: Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION: We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canal de Potasio KCNQ1/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/enzimología , Tubulina (Proteína)/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción , Animales , Células COS , Chlorocebus aethiops , Cobayas , Canal de Potasio KCNQ1/genética , Cinética , Masculino , Ratones , Microtúbulos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Presión Osmótica , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transfección , Tubulina (Proteína)/genética , Moduladores de Tubulina/farmacología
19.
J Physiol ; 586(7): 1785-9, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18174212

RESUMEN

KCNQ1 is the pore-forming subunit of a channel complex whose expression and function have been rather well characterized in the heart. Almost 300 mutations of KCNQ1 have been identified in patients and a vast majority of the described mutations are linked to the long QT syndrome. Only a few mutations are linked to other pathologies such as atrial fibrillation and the short QT syndrome. However, a considerable amount of work remains to be done to get a clear picture of the molecular mechanisms responsible for the pathogenesis related to each mutation. The present review gives three examples of recent studies towards this goal and illustrates the diversity of the molecular mechanisms involved.


Asunto(s)
Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Mutación/genética , Fibrilación Atrial/genética , Humanos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo
20.
Circ Res ; 99(10): 1076-83, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17053194

RESUMEN

N-terminal mutations in the KCNQ1 channel are frequently linked to fatal arrhythmias in newborn children and adolescents but the cellular mechanisms involved in this dramatic issue remain, however, to be discovered. Here, we analyzed the trafficking of a series of N-terminal truncation mutants and identified a critical trafficking motif of KCNQ1. This determinant is located in the juxtamembranous region preceding the first transmembrane domain of the protein. Three mutations (Y111C, L114P and P117L) implicated in inherited Romano-Ward LQT1 syndrome, are embedded within this domain. Reexpression studies in both COS-7 cells and cardiomyocytes showed that the mutant proteins fail to exit the endoplasmic reticulum. KCNQ1 subunits harboring Y111C or L114P exert a dominant negative effect on the wild-type KCNQ1 subunit by preventing plasma membrane trafficking of heteromultimeric channels. The P117L mutation had a less pronounced effect on the trafficking of heteromultimeric channels but altered the kinetics of the current. Furthermore, we showed that the trafficking determinant in KCNQ1 is structurally and functionally conserved in other KCNQ channels and constitutes a critical trafficking determinant of the KCNQ channel family. Computed structural predictions correlated the potential structural changes introduced by the mutations with impaired protein trafficking. In conclusion, our studies unveiled a new role of the N-terminus of KCNQ channels in their trafficking and its implication in severe forms of LQT1 syndrome.


Asunto(s)
Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Membrana Celular/metabolismo , Niño , Chlorocebus aethiops , Cricetinae , Retículo Endoplásmico/metabolismo , Femenino , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Canal de Potasio KCNQ1/biosíntesis , Ratones , Datos de Secuencia Molecular , Mutagénesis , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Isoformas de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA