Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611913

RESUMEN

The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy layered rare earth hydroxychlorides, namely, (Sm,Eu,Gd,Y,Er)2(OH)5Cl, (Eu,Gd,Tb,Y,Er)2(OH)5Cl, (Eu,Gd,Dy,Y,Er)2(OH)5Cl, and (Eu,Gd,Y,Er,Yb)2(OH)5Cl, using a homogeneous hydrolysis technique under hydrothermal conditions. Elemental mapping proved the even distribution of rare earth elements, while luminescence spectroscopy confirmed efficient energy transfer between europium and other rare earth cations, thus providing additional evidence of the homogeneous distribution of rare earth elements within the crystal lattice. The average rare earth cation radii correlated linearly with the unit cell parameters (0.868 < R2 < 0.982) of the high-entropy layered rare earth hydroxychlorides. The thermal stability of the high-entropy layered rare earth hydroxychlorides was similar to that of individual hydroxychlorides and their binary solid solutions.

2.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731646

RESUMEN

Crystalline cerium(III) phosphate (CePO4), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and CePO4/CeO2 composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined. Ce(PO4)(HPO4)0.5(H2O)0.5 was shown to have a sun protection factor of 2.9, which is comparable with that of nanocrystalline ceria and three times higher than the sun protection factor of CePO4. Composites containing both cerium dioxide and CePO4 demonstrated higher sun protection factors (up to 1.8) than individual CePO4. When compared with the TiO2 Aeroxide P25 reference sample, cerium(III) and cerium(IV) phosphates demonstrated negligible photocatalytic activity. A cytotoxicity analysis performed using two mammalian cell lines, hMSc and NCTC L929, showed that CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and nanocrystalline ceria were all non-toxic. The results of this comparative study indicate that cerium(IV) phosphate Ce(PO4)(HPO4)0.5(H2O)0.5 is more advantageous for use in sunscreens than either cerium(III) phosphate or CePO4/CeO2 composites, due to its improved UV-shielding properties and low photocatalytic activity.

3.
Molecules ; 29(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38930918

RESUMEN

PURPOSE OF THE STUDY: the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS: Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS: According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS: The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.


Asunto(s)
Cerio , Dextranos , Escherichia coli , Fibroblastos , Nanocompuestos , Cicatrización de Heridas , Cerio/química , Cerio/farmacología , Dextranos/química , Dextranos/farmacología , Nanocompuestos/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Proliferación Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular
4.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674757

RESUMEN

Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.


Asunto(s)
Cerio , Nanopartículas , Planarias , Animales , Rayos X , Mitógenos/metabolismo , Mediterranea/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cerio/farmacología , Planarias/genética
5.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982493

RESUMEN

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young's modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.


Asunto(s)
Quitosano , Nanocompuestos , Nanofibras , Quitosano/química , Celulosa/química , Nanofibras/química , Resistencia a la Tracción , Nanocompuestos/química
6.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175221

RESUMEN

The enzyme-like activity of metal oxide nanoparticles is governed by a number of factors, including their size, shape, surface chemistry and substrate affinity. For CeO2 nanoparticles, one of the most prominent inorganic nanozymes that have diverse enzymatic activities, the size effect remains poorly understood. The low-temperature hydrothermal treatment of ceric ammonium nitrate aqueous solutions made it possible to obtain CeO2 aqueous sols with different particle sizes (2.5, 2.8, 3.9 and 5.1 nm). The peroxidase-like activity of ceria nanoparticles was assessed using the chemiluminescent method in different biologically relevant buffer solutions with an identical pH value (phosphate buffer and Tris-HCl buffer, pH of 7.4). In the phosphate buffer, doubling CeO2 nanoparticles' size resulted in a two-fold increase in their peroxidase-like activity. The opposite effect was observed for the enzymatic activity of CeO2 nanoparticles in the phosphate-free Tris-HCl buffer. The possible reasons for the differences in CeO2 enzyme-like activity are discussed.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Tamaño de la Partícula , Antioxidantes , Peroxidasas
7.
Molecules ; 28(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770832

RESUMEN

Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.


Asunto(s)
Gadolinio , Nanopartículas , Humanos , Nanopartículas/uso terapéutico , Células Madre , Medios de Contraste , Imagen por Resonancia Magnética/métodos
8.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615607

RESUMEN

The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.


Asunto(s)
Imanes , Dióxido de Silicio , Dióxido de Silicio/química , Cobalto/química , Magnetismo , Etilenodiaminas
9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499698

RESUMEN

In this study, organo-inorganic nanohybrids LHGd-MTSPP with enzyme-like activity were prepared by in situ intercalation of anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin and its complexes with Zn(II) and Pd(II) (MTSPP, M = 2H, Zn(II) and Pd(II)) into gadolinium layered hydroxide (LHGd). The combination of powder XRD, CHNS analysis, FT-IR, EDX, and TG confirmed the layered structure of the reaction products. The basal interplanar distances in LHGd-MTSPP samples were 22.3-22.6 Å, corresponding to the size of an intercalated tetrapyrrole molecule. According to SEM data, LHGd-MTSPP hybrids consisted of individual lamellar nanoparticles 20-50 nm in thickness. The enzyme-like activity of individual constituents, LHGd-Cl and sulfoporphyrins TSPP, ZnTSPP and PdTSPP, and hybrid LHGd-MTSPP materials, was studied by chemiluminescence analysis using the ABAP/luminol system in phosphate buffer solution. All the individual porphyrins exhibited dose-dependent antioxidant properties with respect to alkylperoxyl radicals at pH 7.4. The intercalation of free base TSPP porphyrin into the LHGd preserved the radical scavenging properties of the product. Conversely, in LHGd-MTSPP samples containing Zn(II) and Pd(II) complexes, the antioxidant properties of the porphyrins changed to dose-dependent prooxidant activity. Thus, an efficient approach to the design and synthesis of advanced LHGd-MTSPP materials with switchable enzyme-like activity was developed.


Asunto(s)
Porfirinas , Porfirinas/química , Gadolinio , Espectroscopía Infrarroja por Transformada de Fourier , Hidróxidos/química
10.
Molecules ; 27(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35956978

RESUMEN

A method is proposed for the preparation of stable sols of nanocrystalline cerium dioxide in nonpolar solvents, based on surface modification of CeO2 nanoparticles obtained by thermal hydrolysis of concentrated aqueous solutions of ammonium cerium(IV) nitrate with residues of 2-ethylhexanoic and octanoic acids. The synthesis was carried out at temperatures below 100 °C and did not require the use of expensive and toxic reagents. An assessment of the radical-scavenging properties of the obtained sols using the superoxide anion-radical neutralization model revealed that they demonstrate notable antioxidant activity. The results obtained indicate the potential of the nanoscale cerium dioxide sols in nonpolar solvents to be used for creating nanobiomaterials possessing antioxidant properties.


Asunto(s)
Cerio , Nanopartículas , Antioxidantes/química , Cerio/química , Nanopartículas/química , Solventes
11.
Inorg Chem ; 60(20): 15509-15518, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34613717

RESUMEN

Controlled self-assembly and rapid disintegration of supramolecular nanowires is potentially useful for ecology-friendly organic electronics. Herein, a novel method exploiting the binding between crown-substituted double-decker lanthanide phthalocyaninates (ML2, M = Lu, Ce, Tb) and K+ ions is applied for the one-step fabrication of macroscopically long conductive one-dimensional quasi-metal-organic frameworks. Their properties are controlled by the size of the lanthanide ion guiding the assembly through either intra- or intermolecular interactions. A LuL2 linker with a small interdeck distance yields fully conjugated intermolecular-bonded K+-LuL2 nanowires with a thickness of 10-50 nm, a length of up to 50 µm, and a conductivity of up to 11.4 S cm-1, the highest among them being reported for phthalocyanine assemblies. The large size of CeL2 and TbL2 leads to the formation of mixed intra- and intermolecular K+-ML2 phases with poor electric properties. A field-assisted method is developed to deposit aligned conductive K+-LuL2 assemblies on solids. The solid-supported nanowires can be disintegrated into starting components in a good aprotic solvent for further recycling.

12.
Chemistry ; 26(53): 12188-12193, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32608019

RESUMEN

Two new cerium(IV) phosphates were obtained: cerium(IV) hydroxidophosphate, Ce(OH)PO4 , and cerium(IV) oxidophosphate, Ce2 O(PO4 )2 , which were shown to complement the classes of isostructural compounds M(OH)PO4 and R2 O(PO4 )2 , where M=Th, U and R=Th, U, Np, Zr. Ce2 O(PO4 )2 oxidophosphate is formed by elimination of H2 O from the crystal structure of Ce(OH)PO4 during its thermal decomposition. The structures of Ce(OH)PO4 and Ce2 O(PO4 )2 are related to each other with the same Cmce space group and similar unit cell parameters (a=6.9691(3) Å, b=9.0655(4) Å, c=12.2214(4) Å, V=772.13(8) Å3 , Z=8; a=7.0220(4) Å, b=8.9894(5) Å, c=12.544(1) Å, V=791.8(1) Å3 , Z=4, respectively).

13.
Molecules ; 25(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905983

RESUMEN

Tungsten oxide-based bulk and nanocrystalline materials are widely used as photocatalytic and photo- and electrochromic materials, as well as materials for biomedical applications. In our work, we focused our attention on the effect of sodium cations on the structure and photochromic properties of the WO3@PVP aqueous sols. To establish the effect, the sols were synthesized by either simple pH adjusting of sodium or ammonium tungstates' solutions, or using an ion exchange technique to remove the cations from the materials to the greatest possible extent. We showed that the presence of sodium cations in WO3@PVP favors the formation of reduced tungsten species (W+5) upon UV irradiation of the materials, strongly affecting their photochromic and photocatalytic properties. The pronounced photoreductive properties of WO3@PVP sols in photocatalytic reactions were demonstrated. Due to photoreductive properties, photochromic sols of tungsten oxide can act as effective photoprotectors in photooxidation processes. We believe that our work provides a considerable contribution to the elucidation of photochromic and redox phenomena in WO3-based materials.


Asunto(s)
Nanopartículas/química , Óxidos/química , Povidona/química , Sodio/química , Tungsteno/química , Catálisis , Cationes , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Dispersión del Ángulo Pequeño , Rayos Ultravioleta , Difracción de Rayos X
14.
Molecules ; 24(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540041

RESUMEN

The electrorheological (ER) effect was experimentally observed in dielectric suspensions containing tungsten oxide (WO3) modified with surfactant molecules (sodium dodecyl sulfate (SDS) and dodecylamine (DDA)) in electric fields up to several kilovolts per millimeter. The dielectric properties of WO3 suspensions in silicone oil were analyzed, depending on the frequency of the electric field, in the range from 25 to 106 Hz. Unmodified WO3 suspensions, as well as suspensions modified with sodium dodecyl sulfate, were shown to exhibit a positive electrorheological effect, whereas suspensions modified with dodecylamine demonstrated a negative electrorheological effect. The quantitative characteristics of the negative electrorheological effect in the strain-compression and shear regimes were obtained for the first time. Visualization experiments were performed to see the chain structures formed by WO3 particles modified with sodium dodecyl sulfate, as well as for dynamic electroconvection in electrorheological fluids containing WO3 modified with dodecylamine. The negative electrorheological effect was shown to be associated with the processes of phase separation in the electric field, which led to a multiplicative effect and a strong electroconvection of the suspension at field strengths above 1 kV/mm.


Asunto(s)
Aminas/química , Técnicas Electroquímicas , Óxidos/química , Reología , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Tungsteno/química , Suspensiones
15.
Molecules ; 24(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731434

RESUMEN

A series of carbon aerogels (C-AGs) were prepared by the pyrolysis of resorcinol-formaldehyde aerogels at 700-1100 °C as potential supercapacitor electrodes, and their texture and electrochemical properties were determined. The specific surface area of all C-AGs was in the range of 700-760 m2/g, their electron conductivity increased linearly from 0.4 to 4.46 S/cm with an increase of the pyrolysis temperature. The specific capacitance of electrode material based on C-AGs reached 100 F/g in sulfuric acid and could be realized at a 2 A/g charge-discharge current, which makes it possible to use carbon aerogels as electrode materials.


Asunto(s)
Carbono/química , Formaldehído/química , Geles/química , Resorcinoles/química , Capacidad Eléctrica , Conductividad Eléctrica , Electroquímica , Electrodos , Geles/síntesis química , Nitrógeno/química , Temperatura
16.
Langmuir ; 34(18): 5184-5192, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29665676

RESUMEN

Porphyrin-based metal-organic frameworks on surfaces are a new class of planar materials with promising features for applications in chemical sensing, catalysis, and organic optoelectronics at nanoscale. Herein, we studied systematically a series of the SURMOFs assembled from variously meso-carboxyphenyl/pyridyl-substituted porphyrins and zinc acetate on template monolayers of graphene oxide via layer-by-layer deposition. This microscopically flat template can initiate the growth of macroscopically uniform SURMOF films exhibiting well-resolved X-ray diffraction. By applying the D'yakonov method, which has been previously used for the extraction of self-convolution of electron density in clay minerals, to the analysis of the experimental diffraction patterns of the SURMOFs, we determined the relation between the structure of porphyrin linkers and the geometry of packing motives in the films. We showed that the packing of the SURMOFs differs significantly from that of bulk powders of similar composition because of steric limitations imposed on the assembly in 2D space. The results of microscopic examination of the SURMOFs suggest that the type of metal-to-linker chemical bonding dictates the morphology of the films. Our method provides an enlightening picture of the interplay between supramolecular ordering and surface-directed assembly in porphyrin-based SURMOFs and is useful for rationalizing the fabrication of various classes of layered metal-organic frameworks on solids.

17.
Inorg Chem ; 56(6): 3421-3428, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28256834

RESUMEN

The first member, Y2(OH)5.46(B12H12)0.23Cl0.08·4.98H2O, of a new family of boron-containing substances, closo-dodecaborate intercalated layered rare-earth hydroxides, was synthesized using a microwave-assisted hydrothermal method. The structure and composition of this compound were studied by X-ray diffraction, transmission and scanning electron microscopy, thermal analysis, inductively coupled plasma mass spectrometry, IR spectroscopy, and X-ray photoelectron spectroscopy. The title compound had the composition Y2(OH)5.46(B12H12)0.23Cl0.08·4.98H2O and crystallized in a form of plate-like, aggregated particles less than 10 nm thick. The coordination of closo-dodecaborate anions with yttrium hydroxide host layers was demonstrated.

18.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727363

RESUMEN

Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.

19.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37763954

RESUMEN

In recent years, there has been an increasing interest in stimuli-responsive host-guest materials due to the high potential for their application in switchable devices. Light is the most convenient stimulus for operating these materials; a light-responsive guest affects the host structure and the functional characteristics of the entire material. UV-transparent layered rare earth hydroxides intercalated with UV-switchable anions are promising candidates as stimuli-responsive host-guest materials. The interlayer distance in the layered rare earth hydroxides depends on the size of the intercalated anions, which could be changed in situ, e.g., via anion isomerisation. Nevertheless, for layered rare earth hydroxides, the possibility of such changes has not been reported yet. A good candidate anion that is capable of intercalating into the interlayer space is the cinnamate anion, which undergoes UV-assisted irreversible trans-cis isomerisation. In this work, both trans- and cis-cinnamate anions were intercalated in layered yttrium hydroxide (LYH). Upon UV-irradiation, the interlayer distance of trans-cinnamate-intercalated layered yttrium hydroxide suspended in isopropanol changed from 21.9 to 20.6 Å. For the first time, the results obtained demonstrate the possibility of using layered rare earth hydroxides as stimuli-responsive materials.

20.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571100

RESUMEN

A new para-aramid aerogel based on a polymer made by the reaction of terephthaloyl dichloride with 2-(4-aminophenyl)-1H-benzimidazol-5-amine (PABI) is introduced. The aerogel readily bound Pd (+2) ions and was used as a hydrogenation catalyst in some industrially actual reactions. The new material, which did not contain p-phenylenediamine moieties, was prepared in two form factors: bulk samples and spherical pellets of 700-900 µm in diameter. Aerogels were synthesized from 1% or 5% solutions of PABI in N,N-dimethylacetamide via gelation with acetone or isopropanol and had a density of 0.057 or 0.375 g/cm3 depending on the concentration of the starting PABI solution. The specific surface area of the obtained samples was 470 or 320 m2/g. Spherical pellets containing Pd were prepared from a solution of PdCl2 in PABI and were used as heterogeneous catalysts for the gas-phase hydrogenation of unsaturated organic compounds presenting the main types of industrially important substrates: olefins, acetylenes, aromatics, carbonyls, and nitriles. Catalytic hydrogenation of gaseous hexene-1, hexyne-3, cyclohexene, and acrylonitrile C=C bond proceeded with a 99% conversion at ambient pressure, but the catalyst failed to reduce acetone at 150 °C and benzene and ethyl acetate even at 200 °C. The only product of acrylonitrile hydrogenation was propionitrile. The prepared catalysts showed high selectivity, which is important for the chemistry of complex organic compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA