Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chronic Stress (Thousand Oaks) ; 8: 24705470241258752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846598

RESUMEN

Substance use disorder (SUD) is a significant health problem, and trauma exposure is a known risk factor for the escalation of substance use. However, the shared neural mechanisms through which trauma is associated with substance use are still unknown. Therefore, we systematically review neuroimaging studies focusing on three domains that may contribute to the overlapping mechanisms of SUD and trauma-reward salience, negative emotionality, and inhibition. Using PRISMA guidelines, we identified 45 studies utilizing tasks measuring these domains in alcohol, tobacco, and cannabis use groups. Greater reward, lesser regulation of inhibitory processes, and mixed findings of negative emotionality processes in individuals who use substances versus controls were found. Specifically, greater orbitofrontal cortex, ventral tegmental area, striatum, amygdala, and hippocampal activation was found in response to reward-related tasks, and reduced activation was found in the inferior frontal gyrus and hippocampus in response to inhibition-related tasks. Importantly, no studies in trauma-exposed individuals met our review criteria. Future studies examining the role of trauma-related factors are needed, and more studies should explore inhibition- and negative-emotionality domains in individuals who use substances to uncover clinically significant alterations in these domains that place an individual at greater risk for developing a SUD.

2.
PLoS One ; 13(10): e0201865, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30365488

RESUMEN

Aphids, like most animals, mount a diverse set of defenses against pathogens. For aphids, two of the best studied defenses are symbiont-conferred protection and transgenerational wing induction. Aphids can harbor bacterial symbionts that provide protection against pathogens, parasitoids and predators, as well as against other environmental stressors. In response to signals of danger, aphids also protect not themselves but their offspring by producing more winged than unwinged offspring as a way to ensure that their progeny may be able to escape deteriorating conditions. Such transgenerational wing induction has been studied most commonly as a response to overcrowding of host plants and presence of predators, but recent evidence suggests that pea aphids (Acyrthosiphon pisum) may also begin to produce a greater proportion of winged offspring when infected with fungal pathogens. Here, we explore this phenomenon further by asking how protective symbionts, pathogen dosage and environmental conditions influence this response. Overall, while we find some evidence that protective symbionts can modulate transgenerational wing induction in response to fungal pathogens, we observe that transgenerational wing induction in response to fungal infection is highly variable. That variability cannot be explained entirely by symbiont association, by pathogen load or by environmental stress, leaving the possibility that a complex interplay of genotypic and environmental factors may together influence this trait.


Asunto(s)
Áfidos/genética , Ecología , Micosis/genética , Simbiosis/genética , Animales , Áfidos/crecimiento & desarrollo , Áfidos/microbiología , Hongos/patogenicidad , Micosis/microbiología , Fenotipo , Simbiosis/fisiología , Avispas/genética , Avispas/crecimiento & desarrollo , Avispas/microbiología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA