Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002305, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721949

RESUMEN

Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.

2.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666870

RESUMEN

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Asunto(s)
Empalme Alternativo , Diabetes Mellitus , Antígenos CD59/genética , Antígenos CD59/metabolismo , Diabetes Mellitus/genética , Humanos , Secreción de Insulina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Diabetologia ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743124

RESUMEN

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).

4.
Proc Natl Acad Sci U S A ; 117(5): 2484-2495, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964806

RESUMEN

Circadian clocks operative in pancreatic islets participate in the regulation of insulin secretion in humans and, if compromised, in the development of type 2 diabetes (T2D) in rodents. Here we demonstrate that human islet α- and ß-cells that bear attenuated clocks exhibit strongly disrupted insulin and glucagon granule docking and exocytosis. To examine whether compromised clocks play a role in the pathogenesis of T2D in humans, we quantified parameters of molecular clocks operative in human T2D islets at population, single islet, and single islet cell levels. Strikingly, our experiments reveal that islets from T2D patients contain clocks with diminished circadian amplitudes and reduced in vitro synchronization capacity compared to their nondiabetic counterparts. Moreover, our data suggest that islet clocks orchestrate temporal profiles of insulin and glucagon secretion in a physiological context. This regulation was disrupted in T2D subjects, implying a role for the islet cell-autonomous clocks in T2D progression. Finally, Nobiletin, an agonist of the core-clock proteins RORα/γ, boosted both circadian amplitude of T2D islet clocks and insulin secretion by these islets. Our study emphasizes a link between the circadian clockwork and T2D and proposes that clock modulators hold promise as putative therapeutic agents for this frequent disorder.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Adulto , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Exocitosis/efectos de los fármacos , Femenino , Flavonas/farmacología , Humanos , Técnicas In Vitro , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
5.
Traffic ; 19(6): 436-445, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29542271

RESUMEN

Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Exocitosis/fisiología , Humanos , Células Secretoras de Insulina/metabolismo , Células PC12 , Ratas , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Tripsina/metabolismo
6.
Methods Mol Biol ; 2565: 179-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36205894

RESUMEN

Hormones and neurotransmitters are released from (neuro)endocrine cells by regulated exocytosis of secretory granules. During exocytosis, the granule membrane fuses with the plasma membrane, which allows release of the stored content into the bloodstream or the surrounding tissue. Here, we give a detailed description of two complementary methods to observe and quantify exocytosis in single cells: high-resolution TIRF microscopy and patch-clamp capacitance recordings. Precise stimulation of exocytosis is achieved by local pressure application or voltage-clamp depolarizations. While the chapter is focused on insulin-secreting cells as an accessible and disease-relevant model system, the methodology is applicable to a wide variety of secretory cells including chromaffin and PC12 cells.


Asunto(s)
Exocitosis , Células Secretoras de Insulina , Animales , Membrana Celular/metabolismo , Exocitosis/fisiología , Hormonas/metabolismo , Células Secretoras de Insulina/metabolismo , Neurotransmisores/metabolismo , Ratas , Vesículas Secretoras/metabolismo
7.
Cell Rep ; 42(2): 112036, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701234

RESUMEN

Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.


Asunto(s)
Endocitosis , Exocitosis , Membrana Celular , Insulina , Clatrina , Fosfatidilinositoles , Fusión de Membrana
8.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350286

RESUMEN

The primary cilium is an organelle present in most adult mammalian cells that is considered as an antenna for sensing the local microenvironment. Here, we use intact mouse pancreatic islets of Langerhans to investigate signaling properties of the primary cilium in insulin-secreting ß-cells. We find that GABAB1 receptors are strongly enriched at the base of the cilium, but are mobilized to more distal locations upon agonist binding. Using cilia-targeted Ca2+ indicators, we find that activation of GABAB1 receptors induces selective Ca2+ influx into primary cilia through a mechanism that requires voltage-dependent Ca2+ channel activation. Islet ß-cells utilize cytosolic Ca2+ increases as the main trigger for insulin secretion, yet we find that increases in cytosolic Ca2+ fail to propagate into the cilium, and that this isolation is largely due to enhanced Ca2+ extrusion in the cilium. Our work reveals local GABA action on primary cilia that involves Ca2+ influx and depends on restricted Ca2+ diffusion between the cilium and cytosol.


Asunto(s)
Calcio , Cilios , Islotes Pancreáticos , Receptores de GABA-B , Ácido gamma-Aminobutírico , Animales , Ratones , Calcio/metabolismo , Células Cultivadas , Cilios/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptores de GABA-B/metabolismo , Citosol
9.
Nat Commun ; 14(1): 4250, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460527

RESUMEN

Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proinsulina/metabolismo
10.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35241836

RESUMEN

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Pluripotentes , Animales , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Células Madre Pluripotentes/metabolismo
11.
J Biol Chem ; 285(30): 23007-18, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20498366

RESUMEN

Pulsatile insulin release from glucose-stimulated beta-cells is driven by oscillations of the Ca(2+) and cAMP concentrations in the subplasma membrane space ([Ca(2+)](pm) and [cAMP](pm)). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP](pm), [Ca(2+)](pm), and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 beta-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca(2+)](pm), [cAMP](pm), and PIP(3). Inhibitors of protein kinase A (PKA) markedly diminished the PIP(3) response when applied before glucose stimulation, but did not affect already manifested PIP(3) oscillations. The reduced PIP(3) response could be attributed to accelerated depolarization causing early rise of [Ca(2+)](pm) that preceded the elevation of [cAMP](pm). However, the amplitude of the PIP(3) response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP(3) oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP(3) oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca(2+)](pm) and amplifying [cAMP](pm) signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.


Asunto(s)
AMP Cíclico/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Factores de Tiempo
12.
Nat Commun ; 11(1): 1896, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312960

RESUMEN

Glucagon is released from pancreatic α-cells to activate pathways that raise blood glucose. Its secretion is regulated by α-cell-intrinsic glucose sensing and paracrine control through insulin and somatostatin. To understand the inadequately high glucagon levels that contribute to hyperglycemia in type-2 diabetes (T2D), we analyzed granule behavior, exocytosis and membrane excitability in α-cells of 68 non-diabetic and 21 T2D human donors. We report that exocytosis is moderately reduced in α-cells of T2D donors, without changes in voltage-dependent ion currents or granule trafficking. Dispersed α-cells have a non-physiological V-shaped dose response to glucose, with maximal exocytosis at hyperglycemia. Within intact islets, hyperglycemia instead inhibits α-cell exocytosis, but not in T2D or when paracrine inhibition by insulin or somatostatin is blocked. Surface expression of somatostatin-receptor-2 is reduced in T2D, suggesting a mechanism for the observed somatostatin resistance. Thus, elevated glucagon in human T2D may reflect α-cell insensitivity to paracrine inhibition at hyperglycemia.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/fisiología , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Imagen Óptica , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo
13.
J Neurosci ; 28(8): 1894-903, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18287506

RESUMEN

In small presynaptic boutons in brain, synaptic vesicles are thought not to merge with the plasma membrane when they release transmitter, but instead to close their fusion pores and survive intact for future use (kiss-and-run exocytosis). The strongest evidence for this idea is the slow and incomplete release of the fluorescent membrane marker, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide], from single vesicles. We investigated the release of FM1-43 from sparse cultures of hippocampal neurons grown on coverslips with no glia. This allowed presynaptic boutons to be imaged at favorable signal-to-noise ratio. Sparingly stained boutons were imaged at high time resolution, while high-frequency electrical stimulation caused exocytosis. The release of FM1-43 was quantal and occurred in abrupt steps, each representing a single fusion event. The fluorescence of vesicle clusters traveling along axons had a distribution with the same quantal size, indicating that a vesicle releases all the dye it contains. In most fusion events, the time constant of dye release was <100 ms, and slower release was rarely observed. After exocytosis, no FM1-43 could be detected in the axon to either side of a bouton, indicating that dye was released before it could spread. Our results are consistent with synaptic vesicles fusing fully with the plasma membrane during high-frequency stimulation.


Asunto(s)
Colorantes , Hipocampo/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Colorantes/análisis , Exocitosis/fisiología , Hipocampo/química , Hipocampo/embriología , Neuronas/química , Terminales Presinápticos/química , Terminales Presinápticos/metabolismo , Ratas , Vesículas Sinápticas/química
14.
Biochem Biophys Res Commun ; 389(2): 241-6, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19716806

RESUMEN

Diabetes is characterized by high blood glucose which eventually impairs the secretion of insulin. Glucose directly affects cholesterol biosynthesis and may in turn affect cellular structures that depend on the sterol, including lipid rafts that help organize the secretory apparatus. Here, we investigated the long-term effects of glucose upon lipid rafts and secretory granule dynamics in pancreatic beta-cells. Raft fractions, identified by the presence of GM1 and flotillin, contained characteristically high levels of cholesterol and syntaxin 1A, the t-SNARE which tethers granules to the plasma membrane. Seventy-two hours exposure to 28mM glucose resulted in approximately 30% reduction in membrane cholesterol, with consequent redistribution of raft markers and syntaxin 1A throughout the plasma membrane. Live cell imaging indicated loss of syntaxin 1A from granule docking sites, and fewer docked granules. In conclusion, glucose-mediated inhibition of cholesterol biosynthesis perturbs lipid raft stability, resulting in a loss of syntaxin 1A from granule docking sites and inhibition of insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Hiperglucemia/metabolismo , Insulina/metabolismo , Microdominios de Membrana/metabolismo , Sintaxina 1/metabolismo , Animales , Línea Celular , Colesterol/biosíntesis , Diabetes Mellitus Tipo 2/etiología , Glucosa/metabolismo , Glucosa/farmacología , Hiperglucemia/complicaciones , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratas
15.
Elife ; 82019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31099751

RESUMEN

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here, we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.


Asunto(s)
AMP Cíclico/metabolismo , Exocitosis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/metabolismo , Animales , Proteínas Portadoras/metabolismo , Dinamina I/metabolismo , Humanos , Ratones Noqueados
16.
Diabetes ; 68(4): 747-760, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670477

RESUMEN

Although endoplasmic reticulum (ER) chaperone binding to mutant proinsulin has been reported, the role of protein chaperones in the handling of wild-type proinsulin is underinvestigated. Here, we have explored the importance of glucose-regulated protein 94 (GRP94), a prominent ER chaperone known to fold insulin-like growth factors, in proinsulin handling within ß-cells. We found that GRP94 coimmunoprecipitated with proinsulin and that inhibition of GRP94 function and/or expression reduced glucose-dependent insulin secretion, shortened proinsulin half-life, and lowered intracellular proinsulin and insulin levels. This phenotype was accompanied by post-ER proinsulin misprocessing and higher numbers of enlarged insulin granules that contained amorphic material with reduced immunogold staining for mature insulin. Insulin granule exocytosis was accelerated twofold, but the secreted insulin had diminished bioactivity. Moreover, GRP94 knockdown or knockout in ß-cells selectively activated protein kinase R-like endoplasmic reticulum kinase (PERK), without increasing apoptosis levels. Finally, GRP94 mRNA was overexpressed in islets from patients with type 2 diabetes. We conclude that GRP94 is a chaperone crucial for proinsulin handling and insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proinsulina/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/fisiología , Exocitosis/fisiología , Humanos , Insulina/metabolismo , Pliegue de Proteína , Ratas , eIF-2 Quinasa/metabolismo
17.
Neuron ; 33(2): 287-99, 2002 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-11804575

RESUMEN

Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.


Asunto(s)
Exocitosis/fisiología , Fusión de Membrana/fisiología , Sistemas Neurosecretores/metabolismo , Péptidos/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular , Estimulación Eléctrica , Fluorescencia , Proteínas Fluorescentes Verdes , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Cinética , Proteínas Luminiscentes , Sistemas Neurosecretores/citología , Células PC12 , Ratas
18.
Mol Biol Cell ; 29(22): 2700-2708, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156474

RESUMEN

Syntaxin (stx)-1 is an integral plasma membrane protein that is crucial for two distinct steps of regulated exocytosis, docking of secretory granules at the plasma membrane and membrane fusion. During docking, stx1 clusters at the granule docking site, together with the S/M protein munc18. Here we determined features of stx1 that contribute to its clustering at granules. In live insulin-secreting cells, stx1 and stx3 (but not stx4 or stx11) accumulated at docked granules, and stx1 (but not stx4) rescued docking in cells expressing botulinum neurotoxin-C. Using a series of stx1 deletion mutants and stx1/4 chimeras, we found that all four helical domains (Ha, Hb, Hc, SNARE) and the short N-terminal peptide contribute to recruitment to granules. However, only the Hc domain confers specificity, and it must be derived from stx1 for recruitment to occur. Point mutations in the Hc or the N-terminal peptide designed to interfere with binding to munc18-1 prevent stx1 from clustering at granules, and a mutant munc18 deficient in binding to stx1 does not cluster at granules. We conclude that stx1 is recruited to the docking site in a munc18-1-bound conformation, providing a rationale for the requirement for both proteins for granule docking.


Asunto(s)
Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular , Exocitosis , Ratones , Simulación del Acoplamiento Molecular , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas Qa-SNARE/química , Ratas
19.
Cell Metab ; 27(2): 470-478.e4, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414688

RESUMEN

Glucose-stimulated insulin secretion is biphasic, with a rapid first phase and a slowly developing sustained second phase; both are disturbed in type 2 diabetes (T2D). Biphasic secretion results from vastly different release probabilities of individual insulin granules, but the morphological and molecular basis for this is unclear. Here, we show that human insulin secretion and exocytosis critically depend on the availability of membrane-docked granules and that T2D is associated with a strong reduction in granule docking. Glucose accelerated granule docking, and this effect was absent in T2D. Newly docked granules only slowly acquired release competence; this was regulated by major signaling pathways, but not glucose. Gene expression analysis indicated that key proteins involved in granule docking are downregulated in T2D, and overexpression of these proteins increased granule docking. The findings establish granule docking as an important glucose-dependent step in human insulin secretion that is dysregulated in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Gránulos Citoplasmáticos/metabolismo , Exocitosis , Regulación de la Expresión Génica , Hemoglobina Glucada/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo
20.
EBioMedicine ; 30: 273-282, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606630

RESUMEN

In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting ß cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet ß cells as biological sensors and reveal that 100-1000nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets ß cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Receptores de GABA-A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/efectos de los fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Modelos Biológicos , Subunidades de Proteína/metabolismo , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA