Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neurosci ; 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35882556

RESUMEN

The activation of self-destructive cellular programs helps sculpt the nervous system during development, but the molecular mechanisms used are not fully understood. Prior studies have investigated the role of the APP in the developmental degeneration of sensory neurons with contradictory results. In this work, we sought to elucidate the impact of APP deletion in the development of the sensory nervous system in vivo and in vitro. Our in vivo data show an increase in the number of sciatic nerve axons in adult male and female APP-null mice, consistent with the hypothesis that APP plays a pro-degenerative role in the development of peripheral axons. In vitro, we show that genetic deletion of APP delays axonal degeneration triggered by nerve growth factor deprivation, indicating that APP does play a pro-degenerative role. Interestingly, APP depletion does not affect caspase-3 levels but significantly attenuates the rise of axoplasmic Ca2+ that occurs during degeneration. We examined intracellular Ca2+ mechanisms that could be involved and found that APP-null DRG neurons had increased Ca2+ levels within the endoplasmic reticulum and enhanced store-operated Ca2+ entry. We also observed that DRG axons lacking APP have more mitochondria than their WT counterparts, but these display a lower mitochondrial membrane potential. Finally, we present evidence that APP deficiency causes an increase in mitochondrial Ca2+ buffering capacity. Our results support the hypothesis that APP plays a pro-degenerative role in the developmental degeneration of DRG sensory neurons, and unveil the importance of APP in the regulation of calcium signaling in sensory neurons.Significance Statement:The nervous system goes through a phase of pruning and programmed neuronal cell death during development to reach maturity. In such context, the role played by the APP in the peripheral nervous system has been controversial, ranging from pro-survival to pro-degenerative. Here we present evidence in vivo and in vitro supporting the pro-degenerative role of APP, demonstrating the ability of APP to alter intracellular Ca2+ homeostasis and mitochondria, critical players of programmed cell death. This work provides a better understanding of the physiological function of APP and its implication in developmental neuronal death in the nervous system.

2.
Anal Chem ; 95(42): 15472-15476, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37830912

RESUMEN

An experimental platform is reported that allows for the online characterization of photochemical reactions by coupling a continuous flow photoreactor, equipped with LED light irradiation and a dual-tipped ESI source, directly to a mass spectrometer with electrospray ionization. The capabilities of this platform are demonstrated with two classes of photoreactions: (1) the photopolymerization of methyl methacrylate and (2) photocatalyzed alkyne insertion into a 1,2,3-benzotriazinone. The online technique provides rapid information to inform the underlying photochemical mechanism and evaluate the overall photochemistry.

3.
Hosp Pharm ; 56(4): 287-295, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34381263

RESUMEN

Background: Few studies have compared clinical outcomes and medication use between obese and nonobese children in the pediatric intensive care unit (PICU). Objectives: The primary objective was to compare clinical outcomes including mortality, PICU length of stay (LOS), and mechanical ventilation (MV) requirement between obese and nonobese children. Secondary objectives included analysis of factors associated with these outcomes and medication use between groups. Methods: This retrospective study included children 2 to 17 years old admitted to the PICU over a 1-year time frame. Patients were categorized as obese, body mass index (BMI) ≥ 95th percentile, and nonobese (BMI < 95th percentile). Three binary regression models assessed the impact of obesity on clinical outcomes. Results: There were 834 admissions, with 22.1% involving obese children. There was no difference in mortality, MV requirement, or PICU LOS between groups. There were no associations with obesity and clinical outcomes found, but an association was noted for medication classes and receipt of continuous infusions on clinical outcomes. There was no difference noted in the median number (interquartile range [IQR]) of medications between obese and nonobese children, 8 (6-13) versus 9 (6-15), P = .38, but there was a difference in patients receiving a continuous infusion between obese and nonobese children, 24.4% versus 8.8%, P < .01. The 15 most used medications in both groups included analgesics, antimicrobials, corticosteroids, bronchodilators, and gastrointestinal agents. Conclusions: One-fifth of all admissions included obese children. Obesity was not associated with mortality, PICU LOS, and MV requirement, but the number of medication classes and continuous infusions were associated with these outcomes.

4.
Crit Rev Toxicol ; 49(2): 122-139, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30950677

RESUMEN

Nanotechnology has the potential to bring about revolutionary changes in manufacturing products, including sunscreens. However, a knowledge gap between benefits and detriments of engineered nano-materials used in sunscreens exists, which gives rise to safety concerns. This article is concerned with the protection of consumers without impairing the embellishment of this promising technology. It is widely argued that the harm associated with nano-sunscreens may only occur under certain conditions related mainly to users skin vulnerability, which can be avoided by informed and careful use of such a product. We thus recognize the need for fostering the growth of nanotech simultaneously with preventing potential harm. We revisit the Australian sunscreens regulatory policies, which embrace a "wait and see" approach, through the lens of regulatory policies in the European Union (EU) that are influenced by a "precautionary principle." We highlight the importance of informing consumers about the sunscreen they are using and recommend that product labels should disclose the presence of nano-ingredients in line with the EU disclosure requirements. This will allow users to carefully apply the product in order to avoid any potential harm and to protect manufacturers from possible costly litigation in future. This can be achieved through a combined collaborative effort of regulators, supply chain entities, and end users.


Asunto(s)
Política Ambiental , Nanoestructuras , Protectores Solares , Australia , Unión Europea
5.
Glob Chang Biol ; 24(9): 4009-4022, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29749028

RESUMEN

Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a 'filter' modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large-scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.


Asunto(s)
Eutrofización , Lagos/química , Microalgas/fisiología , Aguas Residuales/análisis , Contaminación del Agua/análisis , Calidad del Agua , Cianobacterias/fisiología , Inglaterra
6.
Immunity ; 30(6): 789-801, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19464198

RESUMEN

Cellular inhibitor of apoptosis proteins (cIAPs) block apoptosis, but their physiological functions are still under investigation. Here, we report that cIAP1 and cIAP2 are E3 ubiquitin ligases that are required for receptor-interacting protein 2 (RIP2) ubiquitination and for nucleotide-binding and oligomerization (NOD) signaling. Macrophages derived from Birc2(-/-) or Birc3(-/-) mice, or colonocytes depleted of cIAP1 or cIAP2 by RNAi, were defective in NOD signaling and displayed sharp attenuation of cytokine and chemokine production. This blunted response was observed in vivo when Birc2(-/-) and Birc3(-/-) mice were challenged with NOD agonists. Defects in NOD2 signaling are associated with Crohn's disease, and muramyl dipeptide (MDP) activation of NOD2 signaling protects mice from experimental colitis. Here, we show that administration of MDP protected wild-type but not Ripk2(-/-) or Birc3(-/-) mice from colitis, confirming the role of the cIAPs in NOD2 signaling in vivo. This discovery provides therapeutic opportunities in the treatment of NOD-dependent immunologic and inflammatory diseases.


Asunto(s)
Inmunidad Innata , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacología , Animales , Apoptosis/inmunología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Colitis/enzimología , Colitis/inmunología , Colitis/patología , Citocinas/inmunología , Citocinas/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Receptores de Reconocimiento de Patrones/agonistas , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Ubiquitina-Proteína Ligasas , Ubiquitinación/inmunología
7.
J Cell Sci ; 128(3): 447-59, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25472715

RESUMEN

The p75 neurotrophin receptor (p75NTR, also known as tumor necrosis factor receptor superfamily member 16) is implicated in diverse cellular events, but fundamental aspects of its signaling mechanisms remain unclear. To address this, we have established a novel bioassay to characterize signaling cascades activated by p75NTR. We show that in COS7 cells, p75NTR expression causes a large increase in cell surface area that relies on the activation of Rac1, and we demonstrate that the p75NTR-dependent COS7 phenotype is dependent on ADAM17- and c-secretase-dependent cleavage of p75NTR and generation of the p75NTR intracellular domain (p75NTRICD). We show that the p75NTR adaptor protein NRAGE (also known as MAGED1) acts downstream of the p75NTRICD in this cascade and, through a yeast two-hybrid screen, identify NEDD9, a Cas family adaptor protein, as a novel NRAGE-binding partner that mediates p75NTR-dependent Rac1 activation and cell spreading. Our results demonstrate a crucial role for p75NTR cleavage in small GTPase activation and define a novel Rac1 activation pathway involving the p75NTRICD, NRAGE andNEDD9.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Proteínas Adaptadoras Transductoras de Señales/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antígenos de Neoplasias/genética , Células COS , Línea Celular , Movimiento Celular/fisiología , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
8.
FASEB J ; 30(9): 3083-90, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27189977

RESUMEN

Hippocampal long-term depression (LTD) is an active form of synaptic plasticity that is necessary for consolidation of spatial memory, contextual fear memory, and novelty acquisition. Recent studies have shown that caspases (CASPs) play an important role in NMDA receptor-dependent LTD and are involved in postsynaptic remodeling and synaptic maturation. In the present study, we examined the role of X-linked inhibitor of apoptosis (XIAP), a putative endogenous CASP inhibitor, in synaptic plasticity in the hippocampus. Analysis in acute brain slices and in cultured hippocampal neurons revealed that XIAP deletion increases CASP-3 activity, enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization, sharply increases LTD, and significantly reduces synapse density. In vivo behaviors related to memory were also altered in XIAP(-/-) mice, with faster acquisition of spatial object location and increased fear memory observed. Together, these results indicate that XIAP plays an important physiologic role in regulating sublethal CASP-3 activity within central neurons and thereby facilitates synaptic plasticity and memory acquisition.-Gibon, J., Unsain, N., Gamache, K., Thomas, R. A., De Leon, A., Johnstone, A., Nader, K., Séguéla, P., Barker, P. A. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Proteínas Inhibidoras de la Apoptosis/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología
9.
EMBO Rep ; 16(1): 79-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25427558

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of dominant-inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin-light chains (CLCs). Using genome-edited HA-LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co-localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.


Asunto(s)
Cadenas Ligeras de Clatrina/metabolismo , Endosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cadenas Ligeras de Clatrina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ojo/metabolismo , Ojo/patología , Técnicas de Silenciamiento del Gen , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Ratas , Proteína de Unión al GTP rac1/genética
10.
Mol Cell Neurosci ; 75: 81-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27449758

RESUMEN

Recent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons. We grew neurons on a culture system that allowed studying the dendritic and axonal domains separately from the cell bodies. We found that a recently characterized calpain substrate, the neurotrophin receptor TrkB, is cleaved in the dendritic and axonal domain of neurons committed to die, and this constitutes an early step in the neuronal degeneration process. While the full-length TrkB (TrkB-FL) levels decreased, the truncated form of TrkB (Tc TrkB-FL) concurrently increased, leading to a TrkB-FL/Tc TrkB-FL imbalance, which is thought to be causally linked to neurodegeneration. We further show that the treatment with N-acetyl-Leu-Leu-norleucinal, a specific calpain activity blocker, fully protects the neuronal processes from degeneration, prevents the TrkB-FL/Tc TrkB-FL imbalance, and provides full neuroprotection. Moreover, the use of the TrkB antagonist ANA 12 at the time when the levels of TrkB-FL were significantly decreased, totally blocked neuronal death, suggesting that Tc TrkB-FL may have a role in neuronal death. These results indicate that the imbalance of these neurotrophins receptors plays a key role in neurite degeneration induced by seizures.


Asunto(s)
Calpaína/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Muerte Celular , Células Cultivadas , Hipocampo/citología , Leupeptinas/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis , Ratas , Ratas Wistar , Receptor trkB/antagonistas & inhibidores , Estado Epiléptico/metabolismo
11.
Genesis ; 54(12): 605-612, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27775873

RESUMEN

The Neurotrophin receptor associated death domain gene (Nradd/Nrh2/Plaidd) is a type I transmembrane protein with a unique and short N-terminal extracellular domain and a transmembrane and intracellular domain that bears high similarity to the p75 neurotrophin receptor (p75NTR/Ngfr). Initial studies suggested that NRADD regulates neurotrophin signaling but very little is known about its physiological roles. We have generated and characterized NRADD conditional and germ-line null mouse lines. These mice are viable and fertile and dont show evident abnormalities. However, NRADD deletion results in an increase in the proportion of dorsal root ganglion neurons expressing p75NTR. The NRADD conditional and complete knockout mouse lines generated are new and useful tools to study the physiological roles of NRADD. Birth Defects Research (Part A) 106:605-612, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Glicoproteínas de Membrana/genética , Factores de Crecimiento Nervioso/genética , Receptores de Muerte Celular/genética , Receptores de Factor de Crecimiento Nervioso/genética , Animales , Apoptosis/genética , Línea Celular , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
12.
J Neurosci ; 35(26): 9741-53, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134656

RESUMEN

Persistent firing of entorhinal cortex (EC) pyramidal neurons is a key component of working and spatial memory. We report here that a pro-brain-derived neurotrophic factor (proBDNF)-dependent p75NTR signaling pathway plays a major role in excitability and persistent activity of pyramidal neurons in layer V of the EC. Using electrophysiological recordings, we show that proBDNF suppresses persistent firing in entorhinal slices from wild-type mice but not from p75NTR-null mice. Conversely, function-blocking proBDNF antibodies enhance excitability of pyramidal neurons and facilitate their persistent firing, and acute exposure to function-blocking p75NTR antibodies results in enhanced firing activity of pyramidal neurons. Genetic deletion of p75NTR specifically in neurons or during adulthood also induces enhanced excitability and persistent activity, indicating that the proBDNF-p75NTR signaling cascade functions within adult neurons to inhibit pyramidal activity. Phosphatidylinositol 4,5-bisphosphate (PIP2)-sensitive transient receptor potential canonical channels play a critical role in mediating persistent firing in the EC and we hypothesized that proBDNF-dependent p75NTR activation regulates PIP2 levels. Accordingly, proBDNF decreases cholinergic calcium responses in cortical neurons and affects carbachol-induced depletion of PIP2. Further, we show that the modulation of persistent firing by proBDNF relies on a p75NTR-Rac1-PI4K pathway. The hypothesis that proBDNF and p75NTR maintain network homeostasis in the adult CNS was tested in vivo and we report that p75NTR-null mice show improvements in working memory but also display an increased propensity for severe seizures. We propose that the proBDNF-p75NTR axis controls pyramidal neuron excitability and persistent activity to balance EC performance with the risk of runaway activity. SIGNIFICANCE STATEMENT: Persistent firing of entorhinal cortex (EC) pyramidal neurons is required for working memory. We report here that pro-brain-derived neurotrophic factor (proBDNF) activates p75NTR to induce a Rac1-dependent and phosphatidylinositol 4,5-bisphosphate-dependent signaling cascade that suppresses persistent activity. Conversely, using loss-of-function approaches, we find that endogenous proBDNF or p75NTR activation strongly decreases pyramidal neuron excitability and persistent firing, suggesting that a physiological role of this proBDNF-p75NTR cascade may be to regulate working memory in vivo. Consistent with this, mice rendered null for p75NTR during adulthood show improvements in working memory but also display an increased propensity for severe seizures. We propose that by attenuating EC network performance, the proBDNF-p75NTR signaling cascade reduces the probability of epileptogenesis.


Asunto(s)
Potenciales de Acción/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/citología , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Aminoquinolinas/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Carbacol/farmacología , Células Cultivadas , Agonistas Colinérgicos/farmacología , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pentilenotetrazol/toxicidad , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Pilocarpina/toxicidad , Precursores de Proteínas/genética , Precursores de Proteínas/farmacología , Pirimidinas/farmacología , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/inmunología , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología
13.
J Neurosci ; 35(35): 12088-102, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338321

RESUMEN

Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT: Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.


Asunto(s)
Calcio/metabolismo , Glaucoma/patología , Receptores AMPA/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Colina O-Acetiltransferasa/metabolismo , Cobalto/metabolismo , Modelos Animales de Enfermedad , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Glaucoma/inducido químicamente , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Receptores AMPA/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Solución Salina Hipertónica/toxicidad , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/fisiología
14.
Rapid Commun Mass Spectrom ; 30(2): 293-300, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26689159

RESUMEN

RATIONALE: Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. METHODS: Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. RESULTS: Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). CONCLUSIONS: We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰.


Asunto(s)
Diatomeas/química , Fósiles , Isótopos de Oxígeno/análisis , Sedimentos Geológicos , Microscopía Electrónica de Rastreo , Factores de Tiempo
15.
Bioorg Med Chem ; 24(19): 4759-4765, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27567078

RESUMEN

Mature neurotrophins as well as their pro forms are critically involved in the regulation of neuronal functions. They are signaling through three distinct types of receptors: tropomyosin receptor kinase family (TrkA/B/C), p75 neurotrophin receptor (p75(NTR)) and sortilin. Aberrant expression of p75(NTR) in the CNS is implicated in a variety of neurodegenerative diseases, including Alzheimer's disease. The goal of this work was to evaluate one of the very few reported p75(NTR) small molecule ligands as a lead compound for development of novel PET radiotracers for in vivo p75(NTR) imaging. Here we report that previously described ligand LM11A-24 shows significant inhibition of carbachol-induced persistent firing (PF) of entorhinal cortex (EC) pyramidal neurons in wild-type mice via selective interaction with p75(NTR). Based on this electrophysiological assay, the compound has very high potency with an EC50<10nM. We optimized the radiosynthesis of [(11)C]LM11A-24 as the first attempt to develop PET radioligand for in vivo imaging of p75(NTR). Despite some weak interaction with CNS tissues, the radiolabeled compound showed unfavorable in vivo profile presumably due to high hydrophilicity.


Asunto(s)
Cafeína/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Cafeína/metabolismo , Cafeína/farmacocinética , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL
16.
Mol Cell ; 30(6): 689-700, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18570872

RESUMEN

The inhibitor of apoptosis (IAP) family of proteins enhances cell survival through mechanisms that remain uncertain. In this report, we show that cIAP1 and cIAP2 promote cancer cell survival by functioning as E3 ubiquitin ligases that maintain constitutive ubiquitination of the RIP1 adaptor protein. We demonstrate that AEG40730, a compound modeled on BIR-binding tetrapeptides, binds to cIAP1 and cIAP2, facilitates their autoubiquitination and proteosomal degradation, and causes a dramatic reduction in RIP1 ubiquitination. We show that cIAP1 and cIAP2 directly ubiquitinate RIP1 and induce constitutive RIP1 ubiquitination in cancer cells and demonstrate that constitutively ubiquitinated RIP1 associates with the prosurvival kinase TAK1. When deubiquitinated by AEG40730 treatment, RIP1 binds caspase-8 and induces apoptosis. These findings provide insights into the function of the IAPs and provide new therapeutic opportunities in the treatment of cancer.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Caspasa 8/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas , Sulfonamidas/farmacología
17.
J Biol Chem ; 289(12): 8067-85, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24519935

RESUMEN

Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/patología , Glioma/metabolismo , Células Madre Neoplásicas/patología , Factores de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glioma/genética , Glioma/patología , Humanos , Mutación , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética
18.
J Neurosci ; 33(5): 2205-16, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23365256

RESUMEN

The transcription factor p53 mediates neuronal death in a variety of stress-related and neurodegenerative conditions. The proapoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However, whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is currently unknown. To address this, we asked whether ASPP1/2 contribute to the death of retinal ganglion cells (RGCs) using in vivo models of acute optic nerve damage in mice and rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced RGC death is attenuated in p53 heterozygote and null mice. We demonstrate that ASPP1/2 proteins are abundantly expressed by injured RGCs, and that short interfering (si)RNA-based ASPP1 or ASPP2 knockdown promotes robust RGC survival. Comparative gene expression analysis revealed that siASPP-mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA), Fas/CD95, and Noxa depends on p53 transcriptional activity. Furthermore, siRNA against PUMA or Fas/CD95 confers neuroprotection, demonstrating a functional role for these p53 targets in RGC death. Our study demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs and provides evidence that blockade of the ASPP-p53 pathway is beneficial for central neuron survival after axonal injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular/fisiología , Células Ganglionares de la Retina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Receptor fas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Axones/metabolismo , Regulación hacia Abajo , Femenino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Receptor fas/genética
19.
J Neurochem ; 131(2): 190-205, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24923428

RESUMEN

Extracellular S100B dramatically increases after brain injury. While low S100B levels are neuroprotective, micromolar S100B levels have shown in vitro to activate microglia and facilitate neuronal death. In astrocytes, S100B exposure activates nuclear factor kappa B (NF-κB) and induces pro-inflammatory mediators. On microglia and neurons S100B effects are essentially mediated by receptor for advanced glycation end products (RAGE)/NF-κB, but it is not clear if these intracellular cascades are activated by different S100B levels in astrocytes and whether increased extracellular S100B is sufficient to induce reactive gliosis. A better understanding of these pathways is essential for developing successful strategies to preserve the beneficial S100B effects after brain injury. Here, we show that microglia-depleted cultured astrocytes exposed to S100B mimicked several features of reactive gliosis by activating RAGE/Rac-1-Cdc42, RAGE/Erk-Akt or RAGE/NF-κB-dependent pathways. S100B effects include RAGE/Rac1-Cdc42-dependent astroglial hypertrophy and facilitation of migration as well as increased mitosis. S100B exposure improved the astrocytic survival to oxidative stress, an effect that requires Erk/Akt. S100B also activates NF-κB in a dose-dependent manner; increases RAGE proximal promoter transcriptional activity and augmented endogenous RAGE expression. S100B-exposed astrocytes showed a pro-inflammatory phenotype with expression of Toll-like receptor 2 (TLR 2), inducible nitric oxide synthase (iNOS) and interleukin 1-beta (IL-1ß), and facilitated neuronal death induced by oxygen-glucose deprivation. In vivo, intracerebral infusion of S100B was enough to induce an astroglial reactive phenotype. Together, these findings demonstrate that extracellular S100B in the micromolar level activates different RAGE-dependent pathways that turn astrocytes into a pro-inflammatory and neurodegenerative phenotype. We propose that S100B turns astrocytes into a reactive phenotype in a RAGE-dependent manner but engaging different intracellular pathways. While both nanomolar and micromolar S100B turn astrocytes into a reactive phenotype, micromolar S100B induces a conversion into a pro-inflammatory-neurodegenerative profile that facilitates neuronal death of OGD-exposed neurons. We think that S100B/RAGE interaction is essential to expand reactive gliosis in the injured brain being a tempting target for limiting reactive gliosis to prevent the glial conversion into the neurodegenerative profile.


Asunto(s)
Astrocitos/metabolismo , Comunicación Autocrina/fisiología , Gliosis/metabolismo , Receptores Inmunológicos/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/administración & dosificación , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Comunicación Autocrina/efectos de los fármacos , Bovinos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Ratas , Ratas Wistar , Receptor para Productos Finales de Glicación Avanzada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA