Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
2.
Nature ; 612(7941): 720-724, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477530

RESUMEN

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Variación Genética , Internacionalidad , Herencia Multifactorial , Uso de Tabaco , Humanos , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Factores de Riesgo , Uso de Tabaco/genética , Consumo de Bebidas Alcohólicas/genética , Transcriptoma , Tamaño de la Muestra , Sitios Genéticos/genética , Europa (Continente)/etnología
3.
Am J Hum Genet ; 111(1): 11-23, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181729

RESUMEN

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Asunto(s)
Aprendizaje del Sistema de Salud , Medicina de Precisión , Humanos , Bancos de Muestras Biológicas , Colorado , Genómica
4.
Nature ; 583(7817): 572-577, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641827

RESUMEN

The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.


Asunto(s)
Flujo Génico/genética , Genoma Humano/genética , Migración Humana/historia , Indígenas Centroamericanos/genética , Indígenas Sudamericanos/genética , Islas , Nativos de Hawái y Otras Islas del Pacífico/genética , América Central/etnología , Colombia/etnología , Europa (Continente)/etnología , Genética de Población , Historia Medieval , Humanos , Polimorfismo de Nucleótido Simple/genética , Polinesia , América del Sur/etnología , Factores de Tiempo
5.
Nature ; 586(7831): 763-768, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057201

RESUMEN

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Asunto(s)
Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Secuenciación Completa del Genoma , Adulto , África/etnología , Anciano , Anciano de 80 o más Años , Población Negra/genética , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Mutación de Línea Germinal/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética , Proteínas de Motivos Tripartitos/genética , Estados Unidos , alfa Carioferinas/genética
6.
Mol Psychiatry ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783055

RESUMEN

Pharmacogenomic testing has emerged as an aid in clinical decision making for psychiatric providers, but more data is needed regarding its utility in clinical practice and potential impact on patient care. In this cross-sectional study, we determined the real-world prevalence of pharmacogenomic actionability in patients receiving psychiatric care. Potential actionability was based on the prevalence of CYP2C19 and CYP2D6 phenotypes, including CYP2D6 allele-specific copy number variations (CNVs). Combined actionability additionally incorporated CYP2D6 phenoconversion and the novel CYP2C-TG haplotype in patients with available medication data. Across 15,000 patients receiving clinical pharmacogenomic testing, 65% had potentially actionable CYP2D6 and CYP2C19 phenotypes, and phenotype assignment was impacted by CYP2D6 allele-specific CNVs in 2% of all patients. Of 4114 patients with medication data, 42% had CYP2D6 phenoconversion from drug interactions and 20% carried a novel CYP2C haplotype potentially altering actionability. A total of 87% had some form of potential actionability from genetic findings and/or phenoconversion. Genetic variation detected via next-generation sequencing led to phenotype reassignment in 22% of individuals overall (2% in CYP2D6 and 20% in CYP2C19). Ultimately, pharmacogenomic testing using next-generation sequencing identified potential actionability in most patients receiving psychiatric care. Early pharmacogenomic testing may provide actionable insights to aid clinicians in drug prescribing to optimize psychiatric care.

7.
Nature ; 570(7762): 514-518, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217584

RESUMEN

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Estudio de Asociación del Genoma Completo/métodos , Hispánicos o Latinos/genética , Grupos Minoritarios , Herencia Multifactorial/genética , Salud de la Mujer , Estatura/genética , Estudios de Cohortes , Femenino , Genética Médica/métodos , Equidad en Salud/tendencias , Disparidades en el Estado de Salud , Humanos , Masculino , Estados Unidos
8.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582791

RESUMEN

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Asunto(s)
Asma/epidemiología , Biomarcadores/metabolismo , Dermatitis Atópica/epidemiología , Leucocitos/patología , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Sitios de Carácter Cuantitativo , Asma/genética , Asma/metabolismo , Asma/patología , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Pronóstico , Proteoma/análisis , Proteoma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Reino Unido/epidemiología , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
9.
J Allergy Clin Immunol ; 151(6): 1609-1621, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36754293

RESUMEN

BACKGROUND: DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES: To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS: This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS: Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS: This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.


Asunto(s)
Asma , Hipersensibilidad , Niño , Humanos , Epigenoma , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Hipersensibilidad/genética , Asma/genética , Metilación de ADN , Genómica , ADN , Islas de CpG
10.
J Allergy Clin Immunol ; 151(5): 1296-1306.e7, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690254

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is characterized by TH2-dominated skin inflammation and systemic response to cutaneously encountered antigens. The TH2 cytokines IL-4 and IL-13 play a critical role in the pathogenesis of AD. The Q576->R576 polymorphism in the IL-4 receptor alpha (IL-4Rα) chain common to IL-4 and IL-13 receptors alters IL-4 signaling and is associated with asthma severity. OBJECTIVE: We sought to investigate whether the IL-4Rα R576 polymorphism is associated with AD severity and exaggerates allergic skin inflammation in mice. METHODS: Nighttime itching interfering with sleep, Rajka-Langeland, and Eczema Area and Severity Index scores were used to assess AD severity. Allergic skin inflammation following epicutaneous sensitization of mice 1 or 2 IL-4Rα R576 alleles (QR and RR) and IL-4Rα Q576 (QQ) controls was assessed by flow cytometric analysis of cells and quantitative RT-PCR analysis of cytokines in skin. RESULTS: The frequency of nighttime itching in 190 asthmatic inner-city children with AD, as well as Rajka-Langeland and Eczema Area and Severity Index scores in 1116 White patients with AD enrolled in the Atopic Dermatitis Research Network, was higher in subjects with the IL-4Rα R576 polymorphism compared with those without, with statistical significance for the Rajka-Langeland score. Following epicutaneous sensitization of mice with ovalbumin or house dust mite, skin infiltration by CD4+ cells and eosinophils, cutaneous expression of Il4 and Il13, transepidermal water loss, antigen-specific IgE antibody levels, and IL-13 secretion by antigen-stimulated splenocytes were significantly higher in RR and QR mice compared with QQ controls. Bone marrow radiation chimeras demonstrated that both hematopoietic cells and stromal cells contribute to the mutants' exaggerated allergic skin inflammation. CONCLUSIONS: The IL-4Rα R576 polymorphism predisposes to more severe AD and increases allergic skin inflammation in mice.


Asunto(s)
Dermatitis Atópica , Eccema , Ratones , Animales , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Células Th2 , Piel/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Prurito/metabolismo , Eccema/metabolismo
11.
Respir Res ; 24(1): 177, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415141

RESUMEN

BACKGROUND: Sepsis and associated organ failures confer substantial morbidity and mortality. Xanthine oxidoreductase (XOR) is implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders including sepsis and sepsis-associated acute respiratory distress syndrome (ARDS). We examined whether single nucleotide polymorphisms (SNPs) in the XDH gene (encoding XOR) might influence susceptibility to and outcome in patients with sepsis. METHODS: We genotyped 28 tag SNPs in XDH gene in the CELEG cohort, including 621 European American (EA) and 353 African American (AA) sepsis patients. Serum XOR activity was measured in a subset of CELEG subjects. Additionally, we assessed the functional effects of XDH variants utilizing empirical data from different integrated software tools and datasets. RESULTS: Among AA patients, six intronic variants (rs206805, rs513311, rs185925, rs561525, rs2163059, rs13387204), in a region enriched with regulatory elements, were associated with risk of sepsis (P < 0.008-0.049). Two out of six SNPs (rs561525 and rs2163059) were associated with risk of sepsis-associated ARDS in an independent validation cohort (GEN-SEP) of 590 sepsis patients of European descent. Two common SNPs (rs1884725 and rs4952085) in tight linkage disequilibrium (LD) provided strong evidence for association with increased levels of serum creatinine (Padjusted<0.0005 and 0.0006, respectively), suggesting a role in increased risk of renal dysfunction. In contrast, among EA ARDS patients, the missense variant rs17011368 (I703V) was associated with enhanced mortality at 60-days (P < 0.038). We found higher serum XOR activity in 143 sepsis patients (54.5 ± 57.1 mU/mL) compared to 31 controls (20.9 ± 12.4 mU/mL, P = 1.96 × 10- 13). XOR activity was associated with the lead variant rs185925 among AA sepsis patients with ARDS (P < 0.005 and Padjusted<0.01). Multifaceted functions of prioritized XDH variants, as suggested by various functional annotation tools, support their potential causality in sepsis. CONCLUSIONS: Our findings suggest that XOR is a novel combined genetic and biochemical marker for risk and outcome in patients with sepsis and ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Xantina Deshidrogenasa/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética , Sepsis/diagnóstico , Sepsis/genética , Sepsis/complicaciones
12.
Hum Genomics ; 16(1): 27, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897116

RESUMEN

RT-PCR is the foremost clinical test for diagnosis of COVID-19. Unfortunately, PCR-based testing has limitations and may not result in a positive test early in the course of infection before symptoms develop. Enveloped RNA viruses, such as coronaviruses, alter peripheral blood methylation and DNA methylation signatures may characterize asymptomatic versus symptomatic infection. We used Illumina's Infinium MethylationEPIC BeadChip array to profile peripheral blood samples from 164 patients who tested positive for SARS-CoV-2 by RT-PCR, of whom 8 had no symptoms. Epigenome-wide association analysis identified 10 methylation sites associated with infection and a quantile-quantile plot showed little inflation. These preliminary results suggest that differences in methylation patterns may distinguish asymptomatic from symptomatic infection.


Asunto(s)
COVID-19 , COVID-19/genética , Epigénesis Genética , Epigenómica , Humanos , SARS-CoV-2/genética
13.
J Allergy Clin Immunol ; 150(4): 965-971.e8, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35304161

RESUMEN

BACKGROUND: Lipid mediators, bioactive products of polyunsaturated fatty acid metabolism, contribute to inflammation initiation and resolution in allergic diseases; however, their presence in lung-related biosamples has not been fully described. OBJECTIVE: We aimed to quantify lipid mediators in the nasal airway epithelium and characterize preliminary associations with asthma. METHODS: Using liquid chromatography-mass spectrometry, we conducted a pilot study to quantify 56 lipid mediators from nasal epithelial samples collected from 11 female participants of an outpatient asthma clinic and community controls (aged 30-55 years). We examined the presence of each compound using descriptive statistics to test whether lipid mediators could distinguish subjects with asthma (n = 8) from control subjects (n = 3) using linear regression and partial least squares discriminant analysis. RESULTS: Fifteen lipid mediators were detectable in all samples, including resolvin (Rv) D5 (RvD5), with the highest median concentrations (in pg/µg protein) of 13-HODE (126.481), 15-HETE (32.869), and 13-OxoODE (13.251). From linear regression adjusted for age, prostaglandin E2 (PGE2) had a trend (P < .1) for higher concentrations in patients with severe asthma compared to controls (mean difference, 0.95; 95% confidence interval, -0.04 to 1.95). Asthma patients had higher scores on principal component 3 compared to controls (mean difference, 2.42; 95% confidence interval, 0.89 to 3.96), which represented lower levels of proresolving 15-HEPE, 19,20-DiHDPA, RvD5, 14-HDHA, 17-HDHA, and 13-HOTrE. Most of these compounds were best at discriminating asthma cases from controls in partial least squares discriminant analysis. CONCLUSION: Lipid mediators are detectable in the nasal epithelium, and their levels distinguish asthma cases from controls.


Asunto(s)
Asma , Dinoprostona , Eicosanoides , Femenino , Humanos , Mucosa Nasal , Proyectos Piloto
14.
J Allergy Clin Immunol ; 149(5): 1807-1811.e16, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34780848

RESUMEN

BACKGROUND: Integration of metabolomics with genetics may advance understanding of disease pathogenesis but has been underused in asthma genetic studies. OBJECTIVE: We sought to discover new genetic effects in asthma and to characterize the molecular consequences of asthma genetic risk through integration with the metabolome in a homogeneous population. METHODS: From fasting serum samples collected on 348 Tangier Island residents, we quantified 2612 compounds using untargeted metabolomics. Genotyping was performed using Illumina's MEGA array imputed to the TOPMed reference panel. To prioritize metabolites for genome-wide association analysis, we performed a metabolome-wide association study with asthma, selecting asthma-associated metabolites with heritability q value less than 0.01 for genome-wide association analysis. We also tested the association between all metabolites and 8451 candidate asthma single nucleotide polymorphisms previously associated with asthma in the UK Biobank. We followed up significant associations by characterizing shared genetic signal for metabolites and asthma using colocalization analysis. For detailed Methods, please see this article's Online Repository at www.jacionline.org. RESULTS: A total of 60 metabolites were associated with asthma (P < .01), including 40 heritable metabolites tested in genome-wide association analysis. We observed a strong association peak for the endocannabinoid linoleoyl ethanolamide on chromosome 6 in VNN1 (P < 2.7 × 10-9). We found strong evidence (colocalization posterior probability >75%) for a shared causal variant between 3 metabolites and asthma, including the polyamine acisoga and variants in LPP, and derivative leukotriene B4 and intergenic variants in chr10p14. CONCLUSIONS: We identified novel metabolite quantitative trait loci with asthma associations. Identification and characterization of these genetically driven metabolites may provide insight into the functional consequences of genetic risk factors for asthma.


Asunto(s)
Asma , Sitios de Carácter Cuantitativo , Asma/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
15.
J Allergy Clin Immunol ; 149(1): 145-155, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34111454

RESUMEN

BACKGROUND: While numerous genetic loci associated with atopic dermatitis (AD) have been discovered, to date, work leveraging the combined burden of AD risk variants across the genome to predict disease risk has been limited. OBJECTIVES: This study aims to determine whether polygenic risk scores (PRSs) relying on genetic determinants for AD provide useful predictions for disease occurrence and severity. It also explicitly tests the value of including genome-wide association studies of related allergic phenotypes and known FLG loss-of-function (LOF) variants. METHODS: AD PRSs were constructed for 1619 European American individuals from the Atopic Dermatitis Research Network using an AD training dataset and an atopic training dataset including AD, childhood onset asthma, and general allergy. Additionally, whole genome sequencing data were used to explore genetic scoring specific to FLG LOF mutations. RESULTS: Genetic scores derived from the AD-only genome-wide association studies were predictive of AD cases (PRSAD: odds ratio [OR], 1.70; 95% CI, 1.49-1.93). Accuracy was first improved when PRSs were built off the larger atopy genome-wide association studies (PRSAD+: OR, 2.16; 95% CI, 1.89-2.47) and further improved when including FLG LOF mutations (PRSAD++: OR, 3.23; 95% CI, 2.57-4.07). Importantly, while all 3 PRSs correlated with AD severity, the best prediction was from PRSAD++, which distinguished individuals with severe AD from control subjects with OR of 3.86 (95% CI, 2.77-5.36). CONCLUSIONS: This study demonstrates how PRSs for AD that include genetic determinants across atopic phenotypes and FLG LOF variants may be a promising tool for identifying individuals at high risk for developing disease and specifically severe disease.


Asunto(s)
Dermatitis Atópica/genética , Proteínas Filagrina/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Desequilibrio de Ligamiento , Mutación con Pérdida de Función , Masculino , Fenotipo
17.
PLoS Genet ; 15(12): e1008500, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869403

RESUMEN

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Medicina de Precisión/métodos , Secuenciación Completa del Genoma/métodos , Globinas beta/genética , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Estados Unidos
18.
J Allergy Clin Immunol ; 148(6): 1493-1504, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33713768

RESUMEN

BACKGROUND: Genetic ancestry plays a role in asthma health disparities. OBJECTIVE: Our aim was to evaluate the impact of ancestry on and identify genetic variants associated with asthma, total serum IgE level, and lung function. METHODS: A total of 436 Peruvian children (aged 9-19 years) with asthma and 291 without asthma were genotyped by using the Illumina Multi-Ethnic Global Array. Genome-wide proportions of indigenous ancestry populations from continental America (NAT) and European ancestry from the Iberian populations in Spain (IBS) were estimated by using ADMIXTURE. We assessed the relationship between ancestry and the phenotypes and performed a genome-wide association study. RESULTS: The mean ancestry proportions were 84.7% NAT (case patients, 84.2%; controls, 85.4%) and 15.3% IBS (15.8%; 14.6%). With adjustment for asthma, NAT was associated with higher total serum IgE levels (P < .001) and IBS was associated with lower total serum IgE levels (P < .001). NAT was associated with higher FEV1 percent predicted values (P < .001), whereas IBS was associated with lower FEV1 values in the controls but not in the case patients. The HLA-DR/DQ region on chromosome 6 (Chr6) was strongly associated with total serum IgE (rs3135348; P = 3.438 × 10-10) and was independent of an association with the haplotype HLA-DQA1∼HLA-DQB1:04.01∼04.02 (P = 1.55 × 10-05). For lung function, we identified a locus (rs4410198; P = 5.536 × 10-11) mapping to Chr19, near a cluster of zinc finger interacting genes that colocalizes to the long noncoding RNA CTD-2537I9.5. This novel locus was replicated in an independent sample of pediatric case patients with asthma with similar admixture from Brazil (P = .005). CONCLUSION: This study confirms the role of HLA in atopy, and identifies a novel locus mapping to a long noncoding RNA for lung function that may be specific to children with NAT.


Asunto(s)
Asma/genética , Genotipo , Inmunoglobulina E/metabolismo , Pueblos Indígenas , Pulmón/metabolismo , Adolescente , Américas , Asma/epidemiología , Niño , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA-DQ/metabolismo , Humanos , Pulmón/inmunología , Masculino , Perú/epidemiología , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , España , Adulto Joven
19.
J Allergy Clin Immunol ; 148(6): 1589-1595, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536413

RESUMEN

BACKGROUND: Total serum IgE (tIgE) is an important intermediate phenotype of allergic disease. Whole genome genetic association studies across ancestries may identify important determinants of IgE. OBJECTIVE: We aimed to increase understanding of genetic variants affecting tIgE production across the ancestry and allergic disease spectrum by leveraging data from the National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine program; the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA); and the Atopic Dermatitis Research Network (N = 21,901). METHODS: We performed genome-wide association within strata of study, disease, and ancestry groups, and we combined results via a meta-regression approach that models heterogeneity attributable to ancestry. We also tested for association between HLA alleles called from whole genome sequence data and tIgE, assessing replication of associations in HLA alleles called from genotype array data. RESULTS: We identified 6 loci at genome-wide significance (P < 5 × 10-9), including 4 loci previously reported as genome-wide significant for tIgE, as well as new regions in chr11q13.5 and chr15q22.2, which were also identified in prior genome-wide association studies of atopic dermatitis and asthma. In the HLA allele association study, HLA-A∗02:01 was associated with decreased tIgE level (Pdiscovery = 2 × 10-4; Preplication = 5 × 10-4; Pdiscovery+replication = 4 × 10-7), and HLA-DQB1∗03:02 was strongly associated with decreased tIgE level in Hispanic/Latino ancestry populations (PHispanic/Latino discovery+replication = 8 × 10-8). CONCLUSION: We performed the largest genome-wide association study and HLA association study of tIgE focused on ancestrally diverse populations and found several known tIgE and allergic disease loci that are relevant in non-European ancestry populations.


Asunto(s)
Asma/genética , Dermatitis Atópica/genética , Etnicidad , Genotipo , Antígeno HLA-A2/genética , Cadenas beta de HLA-DQ/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inmunoglobulina E/sangre , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Secuenciación Completa del Genoma , Adulto Joven
20.
Am J Epidemiol ; 190(10): 1977-1992, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861317

RESUMEN

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenómica/métodos , Medicina de Precisión/métodos , Agregación de Datos , Humanos , Difusión de la Información , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Evaluación de Programas y Proyectos de Salud , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA