RESUMEN
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation â¼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.
Asunto(s)
Genoma/genética , Hylobates/clasificación , Hylobates/genética , Cariotipo , Filogenia , Animales , Evolución Molecular , Hominidae/clasificación , Hominidae/genética , Humanos , Datos de Secuencia Molecular , Retroelementos/genética , Selección Genética , Terminación de la Transcripción GenéticaRESUMEN
The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.
Asunto(s)
Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Genoma , Difusión de la Información , Animales , Epigenómica , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Vertebrados/genética , Navegador WebRESUMEN
The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.
Asunto(s)
Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Genes , Variación Genética , Humanos , Internet , Ratones , Proteínas/genética , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Programas InformáticosRESUMEN
Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Animales , Epigénesis Genética , Variación Genética , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Programas InformáticosRESUMEN
Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.
Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Cordados/genética , Variación Genética , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Fenotipo , RatasRESUMEN
The Consensus Coding Sequence (CCDS) project (http://www.ncbi.nlm.nih.gov/CCDS/) is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies by the National Center for Biotechnology Information (NCBI) and Ensembl genome annotation pipelines. Identical annotations that pass quality assurance tests are tracked with a stable identifier (CCDS ID). Members of the collaboration, who are from NCBI, the Wellcome Trust Sanger Institute and the University of California Santa Cruz, provide coordinated and continuous review of the dataset to ensure high-quality CCDS representations. We describe here the current status and recent growth in the CCDS dataset, as well as recent changes to the CCDS web and FTP sites. These changes include more explicit reporting about the NCBI and Ensembl annotation releases being compared, new search and display options, the addition of biologically descriptive information and our approach to representing genes for which support evidence is incomplete. We also present a summary of recent and future curation targets.
Asunto(s)
Bases de Datos Genéticas , Proteínas/genética , Animales , Exones , Genómica , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Análisis de SecuenciaRESUMEN
The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Genómica/métodos , Anotación de Secuencia Molecular , Animales , Biología Computacional/métodos , ADN Complementario/química , ADN Complementario/genética , Evolución Molecular , Exones , Sitios Genéticos , Humanos , Internet , Modelos Moleculares , Sistemas de Lectura Abierta , Seudogenes , Control de Calidad , Sitios de Empalme de ARN , ARN Largo no Codificante , Reproducibilidad de los Resultados , Regiones no TraducidasRESUMEN
The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.
Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Regulación de la Expresión Génica , Variación Genética , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Ratas , Programas Informáticos , Pez Cebra/genéticaRESUMEN
The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.
Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Regulación de la Expresión Génica , Variación Genética , Humanos , Ratones , Anotación de Secuencia Molecular , RatasRESUMEN
Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.
Asunto(s)
Acrilamidas , Resistencia a Antineoplásicos , Receptores ErbB , Indoles , Neoplasias Pulmonares , Mutación , Pirimidinas , Factores de Transcripción , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Gefitinib/farmacología , Vía de Señalización Hippo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-CasRESUMEN
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.
Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Variación Genética , Humanos , Ratones , Anotación de Secuencia Molecular , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos , Pez Cebra/genéticaRESUMEN
PARP inhibitors (PARPi) are currently indicated for the treatment of ovarian, breast, pancreatic, and prostate cancers harboring mutations in the tumor suppressor genes BRCA1 or BRCA2. In the case of ovarian and prostate cancers, their classification as homologous recombination repair (HRR) deficient (HRD) or mutated also makes PARPi an available treatment option beyond BRCA1 or BRCA2 mutational status. However, identification of the most relevant genetic alterations driving the HRD phenotype has proven difficult and recent data have shown that other genetic alterations not affecting HRR are also capable of driving PARPi responses. To gain insight into the genetics driving PARPi sensitivity, we performed CRISPR-Cas9 loss-of-function screens in six PARPi-insensitive cell lines and combined the output with published PARPi datasets from eight additional cell lines. Ensuing exploration of the data identified 110 genes whose inactivation is strongly linked to sensitivity to PARPi. Parallel cell line generation of isogenic gene knockouts in ovarian and prostate cancer cell lines identified that inactivation of core HRR factors is required for driving in vitro PARPi responses comparable with the ones observed for BRCA1 or BRCA2 mutations. Moreover, pan-cancer genetic, transcriptomic, and epigenetic data analyses of these 110 genes highlight the ones most frequently inactivated in tumors, making this study a valuable resource for prospective identification of potential PARPi-responsive patient populations. Importantly, our investigations uncover XRCC3 gene silencing as a potential new prognostic biomarker of PARPi sensitivity in prostate cancer. Significance: This study identifies tumor genetic backgrounds where to expand the use of PARPis beyond mutations in BRCA1 or BRCA2. This is achieved by combining the output of unbiased genome-wide loss-of-function CRISPR-Cas9 genetic screens with bioinformatics analysis of biallelic losses of the identified genes in public tumor datasets, unveiling loss of the DNA repair gene XRCC3 as a potential biomarker of PARPi sensitivity in prostate cancer.
Asunto(s)
Neoplasias Ováricas , Neoplasias de la Próstata , Humanos , Masculino , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Resistencia a Antineoplásicos , BiomarcadoresRESUMEN
Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN/genética , Detección Precoz del Cáncer/métodos , Humanos , Sensibilidad y EspecificidadRESUMEN
The Gene Ontology Annotation (GOA) project at the EBI (http://www.ebi.ac.uk/goa) provides high-quality electronic and manual associations (annotations) of Gene Ontology (GO) terms to UniProt Knowledgebase (UniProtKB) entries. Annotations created by the project are collated with annotations from external databases to provide an extensive, publicly available GO annotation resource. Currently covering over 160 000 taxa, with greater than 32 million annotations, GOA remains the largest and most comprehensive open-source contributor to the GO Consortium (GOC) project. Over the last five years, the group has augmented the number and coverage of their electronic pipelines and a number of new manual annotation projects and collaborations now further enhance this resource. A range of files facilitate the download of annotations for particular species, and GO term information and associated annotations can also be viewed and downloaded from the newly developed GOA QuickGO tool (http://www.ebi.ac.uk/QuickGO), which allows users to precisely tailor their annotation set.
Asunto(s)
Bases de Datos de Proteínas , Genes , Proteínas/genética , Vocabulario Controlado , Animales , Humanos , Proteoma/genéticaRESUMEN
UNLABELLED: QuickGO is a web-based tool that allows easy browsing of the Gene Ontology (GO) and all associated electronic and manual GO annotations provided by the GO Consortium annotation groups QuickGO has been a popular GO browser for many years, but after a recent redevelopment it is now able to offer a greater range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. AVAILABILITY AND IMPLEMENTATION: QuickGO has implemented in JavaScript, Ajax and HTML, with all major browsers supported. It can be queried online at http://www.ebi.ac.uk/QuickGO. The software for QuickGO is freely available under the Apache 2 licence and can be downloaded from http://www.ebi.ac.uk/QuickGO/installation.html
Asunto(s)
Biología Computacional/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet , Programas Informáticos , Bases de Datos Factuales , Interfaz Usuario-ComputadorRESUMEN
Gene Ontology (GO) vocabularies are an established standard for linking functional information to genes and gene products (www.geneontology.org/). A recent collaboration between University College London and the European Bioinformatics Institute is providing GO annotation to human cardiovascular-associated genes (http://www.ucl.ac.uk/medicine/cardiovascular-genetics/geneontology.html). This report outlines the aims of this collaboration and summarizes how the cardiovascular community can help improve the quality and quantity of GO annotations. This new initiative is funded by the British Heart Foundation and fully supported by the GO Consortium.
Asunto(s)
Enfermedades Cardiovasculares/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , LondresRESUMEN
The Gene Ontology (GO) is an established dynamic and structured vocabulary that has been successfully used in gene and protein annotation. Designed by biologists to improve data integration, GO attempts to replace the multiple nomenclatures used by specialised and large biological knowledgebases. This chapter describes the methods used by groups to create new GO annotations and how users can apply publicly available GO annotations to enhance their datasets.
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Almacenamiento y Recuperación de la Información/métodos , Vocabulario Controlado , Terminología como AsuntoRESUMEN
BACKGROUND: Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities. DESCRIPTION: To facilitate systems biology in these traditionally agricultural species we have established "AgBase", a curated, web-accessible, public resource http://www.agbase.msstate.edu for structural and functional annotation of agricultural genomes. The AgBase database includes a suite of computational tools to use GO annotations. We use standardized nomenclature following the Human Genome Organization Gene Nomenclature guidelines and are currently functionally annotating chicken, cow and sheep gene products using the Gene Ontology (GO). The computational tools we have developed accept and batch process data derived from different public databases (with different accession codes), return all existing GO annotations, provide a list of products without GO annotation, identify potential orthologs, model functional genomics data using GO and assist proteomics analysis of ESTs and EST assemblies. Our journal database helps prevent redundant manual GO curation. We encourage and publicly acknowledge GO annotations from researchers and provide a service for researchers interested in GO and analysis of functional genomics data. CONCLUSION: The AgBase database is the first database dedicated to functional genomics and systems biology analysis for agriculturally important species and their pathogens. We use experimental data to improve structural annotation of genomes and to functionally characterize gene products. AgBase is also directly relevant for researchers in fields as diverse as agricultural production, cancer biology, biopharmaceuticals, human health and evolutionary biology. Moreover, the experimental methods and bioinformatics tools we provide are widely applicable to many other species including model organisms.
Asunto(s)
Agricultura , Bases de Datos Genéticas , Genómica , Animales , Bases de Datos de Proteínas , Genoma/genética , HumanosRESUMEN
The Gene Ontology Annotation (GOA) database (http://www.ebi.ac.uk/GOA) aims to provide high-quality electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO). As a supplementary archive of GO annotation, GOA promotes a high level of integration of the knowledge represented in UniProt with other databases. This is achieved by converting UniProt annotation into a recognized computational format. GOA provides annotated entries for nearly 60,000 species (GOA-SPTr) and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. By integrating GO annotations from other model organism groups, GOA consolidates specialized knowledge and expertise to ensure the data remain a key reference for up-to-date biological information. Furthermore, the GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation of proteins likely to benefit human health and disease. In addition to a non-redundant set of annotations to the human proteome (GOA-Human) and monthly releases of its GO annotation for all species (GOA-SPTr), a series of GO mapping files and specific cross-references in other databases are also regularly distributed. GOA can be queried through a simple user-friendly web interface or downloaded in a parsable format via the EBI and GO FTP websites. The GOA data set can be used to enhance the annotation of particular model organism or gene expression data sets, although increasingly it has been used to evaluate GO predictions generated from text mining or protein interaction experiments. In 2004, the GOA team will build on its success and will continue to supplement the functional annotation of UniProt and work towards enhancing the ability of scientists to access all available biological information. Researchers wishing to query or contribute to the GOA project are encouraged to email: goa@ebi.ac.uk.
Asunto(s)
Bases de Datos Genéticas , Bases de Datos de Proteínas , Genes , Terminología como Asunto , Animales , Biología Computacional , Humanos , Almacenamiento y Recuperación de la Información , Internet , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , ProteómicaRESUMEN
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).