Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell Environ ; 41(6): 1346-1360, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29430678

RESUMEN

The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi-spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non-Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FT-B1. Deletion of FT-B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs.


Asunto(s)
Pan , Citidina/análogos & derivados , Eliminación de Gen , Genes de Plantas , Triticum/anatomía & histología , Citidina/farmacología , Metilación de ADN/genética , Flores/efectos de los fármacos , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genómica , Patrón de Herencia/genética , Mutación/genética , Latencia en las Plantas/efectos de los fármacos , Temperatura , Triticum/genética , Triticum/crecimiento & desarrollo
2.
Plant Cell ; 26(3): 1094-104, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24642944

RESUMEN

It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains.


Asunto(s)
Criptocromos/fisiología , Germinación/fisiología , Hordeum/fisiología , Luz , Proteínas de Plantas/fisiología , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
3.
J Exp Bot ; 67(11): 3497-508, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140440

RESUMEN

Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.


Asunto(s)
Frío , Ciclopentanos/metabolismo , Germinación , Oxilipinas/metabolismo , Latencia en las Plantas , Triticum/crecimiento & desarrollo , Isoleucina/metabolismo
4.
Plant Physiol ; 161(3): 1265-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23321420

RESUMEN

Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Carácter Cuantitativo Heredable , Triticum/genética , Triticum/fisiología , alfa-Amilasas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Endospermo/efectos de los fármacos , Endospermo/enzimología , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Genotipo , Giberelinas/farmacología , Punto Isoeléctrico , Análisis de Secuencia por Matrices de Oligonucleótidos , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Triticum/enzimología , Triticum/crecimiento & desarrollo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , alfa-Amilasas/biosíntesis
5.
Planta ; 238(1): 121-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23588419

RESUMEN

Abscisic acid (ABA) plays a central role in seed dormancy and transcriptional regulation of genes coding for ABA biosynthetic and degradation enzymes is responsible for control of ABA content. However, little is known about signalling both before and after ABA regulation, in particular, how environmental signals are perceived and transduced. We are interested in these processes in cereal grains, particularly in relation to the development of strategies for controlling pre-harvest sprouting in barley and wheat. Our previous studies have indicated possible components of dormancy control and here we present evidence that blue light, nitric oxide (NO) and jasmonate are major controlling elements in wheat grain. Using microarray and pharmacological studies, we have found that blue light inhibits germination in dormant grain and that methyl jasmonate (MJ) and NO counteract this effect by reducing dormancy. We also present evidence that NO and jasmonate play roles in dormancy control in vivo. ABA was reduced by MJ and this was accompanied by reduced levels of expression of TaNCED1 and increased expression of TaABA8'OH-1 compared with dormant grain. Similar changes were caused by after-ripening. Analysis of global gene expression showed that although jasmonate and after-ripening caused important changes in gene expression, the changes were very different. While breaking dormancy, MJ had only a small number of target genes including gene(s) encoding beta-glucosidase. Our evidence indicates that NO and MJ act interdependently in controlling reduction of ABA and thus the demise of dormancy.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Germinación/fisiología , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Latencia en las Plantas/fisiología , Triticum/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Acetatos/farmacología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Luz , Óxido Nítrico/farmacología , Oxilipinas/farmacología , Latencia en las Plantas/efectos de los fármacos , Triticum/efectos de los fármacos
6.
New Phytol ; 193(2): 376-86, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22039925

RESUMEN

• Lack of grain dormancy in cereal crops such as barley and wheat is a common problem affecting farming areas around the world, causing losses in yield and quality because of preharvest sprouting. Control of seed or grain dormancy has been investigated extensively using various approaches in different species, including Arabidopsis and cereals. However, the use of a monocot model plant such as Brachypodium distachyon presents opportunities for the discovery of new genes related to grain dormancy that are not present in modern commercial crops. • In this work we present an anatomical description of the Brachypodium caryopsis, and we describe the dormancy behaviour of six common diploid Brachypodium inbred genotypes. We also study the effect of light quality (blue, red and far-red) on germination, and analyse changes in abscisic acid levels and gene expression between a dormant and a non-dormant Brachypodium genotype. • Our results indicate that different genotypes display high natural variability in grain dormancy and that the characteristics of dormancy and germination are similar to those found in other cereals. • We propose that Brachypodium is an ideal model for studies of grain dormancy in grasses and can be used to identify new strategies for increasing grain dormancy in crop species.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Brachypodium/efectos de la radiación , Luz , Modelos Biológicos , Latencia en las Plantas/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Ácido Abscísico/farmacología , Brachypodium/embriología , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genotipo , Endogamia , Latencia en las Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/genética , Semillas/ultraestructura , Temperatura , Factores de Tiempo
7.
Sci Rep ; 12(1): 14229, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987959

RESUMEN

Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes.


Asunto(s)
Pan , Triticum , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fenotipo , Sitios de Carácter Cuantitativo , Triticum/genética
8.
Plant J ; 61(4): 611-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19947978

RESUMEN

Seed dormancy is a very important trait that maximizes the survival of seed in nature, the control of which can have important repercussions on the yield of many crop species. We have used gene expression profiling to identify genes that are involved in dormancy regulation in Arabidopsis thaliana. RNA was isolated from imbibed dormant (D) and after-ripened (AR) ecotype C24 seeds, and then screened by quantitative RT-PCR (qRT-PCR) for differentially expressed transcription factors (TFs) and other regulatory genes. Out of 2207 genes screened, we have identified 39 that were differentially expressed during the first few hours of imbibition. After analyzing T-DNA insertion mutants for 22 of these genes, two displayed altered dormancy compared with the wild type. These mutants are affected in genes that encode a RING finger and an HDZip protein. The first, named DESPIERTO, is involved in ABA sensitivity during seed development, regulates the expression of ABI3, and produces a complete loss of dormancy when mutated. The second, the HDZip (ATHB20), is expressed during seed germination in the micropylar endosperm and in the root cap, and increases ABA sensitivity and seed dormancy when mutated.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Semillas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , ADN Bacteriano , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Homeodominio/genética , Mutagénesis Insercional , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Dominios RING Finger , ARN de Planta/genética , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Sci Rep ; 10(1): 17800, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082361

RESUMEN

In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines.


Asunto(s)
Latencia en las Plantas/fisiología , Proteínas de Plantas/metabolismo , Termotolerancia/fisiología , Triticum/fisiología , alfa-Amilasas/metabolismo , Australia , Cambio Climático , Grano Comestible , Calor , Fenómenos Fisiológicos de las Plantas , Semillas , Regulación hacia Arriba
10.
Front Plant Sci ; 8: 1555, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955352

RESUMEN

Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 (PM19) genes and the mitogen-activated protein kinase kinase 3 (TaMKK3-A) gene, have been proposed to underlie Phs-A1. To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A, and not PM19, is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A. Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will help inform the choice of germplasm and breeding strategies for the deployment of Phs-A1 resistance into breeding germplasm.

11.
Genome Biol ; 16: 93, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25962727

RESUMEN

BACKGROUND: Next-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL. RESULTS: We use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy. CONCLUSIONS: The efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Genotipo , Germinación , Familia de Multigenes , Poliploidía , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN , Triticum/clasificación
13.
PLoS One ; 6(5): e20408, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21637772

RESUMEN

Mutants in the rice PLASTOCHRON 3 and maize VIVIPAROUS 8 genes have been shown to have reduced dormancy and ABA levels. In this study we used several mutants in the orthologous gene ALTERED MERISTEM PROGRAM 1 (AMP1) to determine its role in seed dormancy in Arabidopsis. Here we report that there are accession-specific effects of mutations in AMP1. In one accession, amp1 mutants produce seeds with higher dormancy, while those in two other accessions produce seeds of lower dormancy. These accession-specific effects of mutating AMP1 were shown to extend to ABA levels. We assayed global gene transcription differences in seeds of wild-type and mutant from two accessions demonstrating opposing phenotypes. The transcript changes observed indicate that the amp1 mutation shifts the seed transcriptome from a dormant into an after-ripened state. Specific changes in gene expression in the mutants give insight into the direct and indirect effects that may be contributing to the opposing dormancy phenotypes observed, and reveal a role for AMP1 in the acquisition and/or maintenance of seed dormancy in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Carboxipeptidasas/metabolismo , Latencia en las Plantas/fisiología , Ácido Abscísico/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboxipeptidasas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
14.
Plant Physiol ; 150(2): 1006-21, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386806

RESUMEN

The decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8'-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.


Asunto(s)
Perfilación de la Expresión Génica , Hordeum/fisiología , Semillas/anatomía & histología , Semillas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Giberelinas/farmacología , Hordeum/citología , Hordeum/genética , Hordeum/ultraestructura , Luz , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/efectos de la radiación , Análisis de Componente Principal , Semillas/crecimiento & desarrollo , Semillas/ultraestructura
15.
Plant Cell ; 14(8): 1833-46, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12172025

RESUMEN

Mutants able to germinate and perform early growth in medium containing a high NaCl concentration were identified during the course of two independent screenings and named salt resistant (sre) and salobreño (sañ). The sre and sañ mutants also were able to germinate in high-osmoticum medium, indicating that they are osmotolerant in a germination assay. Complementation analyses revealed that sre1-1, sre1-2, sañ3-1, and sañ3-2 were alleles of the abscisic acid (ABA) biosynthesis ABA2 gene. A map-based cloning strategy allowed the identification of the ABA2 gene and molecular characterization of four new aba2 alleles. The ABA2 gene product belongs to the family of short-chain dehydrogenases/reductases, which are known to be NAD- or NADP-dependent oxidoreductases. Recombinant ABA2 protein produced in Escherichia coli exhibits a K(m) value for xanthoxin of 19 micro M and catalyzes in a NAD-dependent manner the conversion of xanthoxin to abscisic aldehyde, as determined by HPLC-mass spectrometry. The ABA2 mRNA is expressed constitutively in all plant organs examined and is not upregulated in response to osmotic stress. The results of this work are discussed in the context of previous genetic and biochemical evidence regarding ABA biosynthesis, confirming the xanthoxin-->abscisic aldehyde-->ABA transition as the last steps of the major ABA biosynthetic pathway.


Asunto(s)
Ácido Abscísico/biosíntesis , Alcohol Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/genética , Proteínas de Arabidopsis/genética , Sesquiterpenos/metabolismo , Ácido Abscísico/análogos & derivados , Ácido Abscísico/farmacología , Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/metabolismo , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carotenoides , Catálisis , Mapeo Cromosómico , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Germinación , Manitol/farmacología , Datos de Secuencia Molecular , Mutación , Presión Osmótica/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA