Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7930): 154-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952712

RESUMEN

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Ciudades/epidemiología , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Humanos , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/aislamiento & purificación , Viaje/legislación & jurisprudencia
2.
Nature ; 600(7889): 506-511, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34649268

RESUMEN

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , Genómica , SARS-CoV-2/genética , Sustitución de Aminoácidos , COVID-19/transmisión , Inglaterra/epidemiología , Monitoreo Epidemiológico , Humanos , Epidemiología Molecular , Mutación , Cuarentena/estadística & datos numéricos , SARS-CoV-2/clasificación , Análisis Espacio-Temporal , Glicoproteína de la Espiga del Coronavirus/genética
3.
Nature ; 593(7858): 266-269, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767447

RESUMEN

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Inglaterra/epidemiología , Evolución Molecular , Genoma Viral/genética , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Factores de Tiempo , Adulto Joven
4.
Nature ; 586(7831): 757-762, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057194

RESUMEN

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Asunto(s)
Análisis Mutacional de ADN , Análisis de Datos , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Atención a la Salud/estadística & datos numéricos , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Congénitas/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/diagnóstico , Europa (Continente) , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Mutación de Línea Germinal/genética , Haploinsuficiencia/genética , Humanos , Masculino , Mutación Missense/genética , Penetrancia , Muerte Perinatal , Tamaño de la Muestra
5.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35249272

RESUMEN

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Eficacia de las Vacunas , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Vacuna BNT162/uso terapéutico , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Estudios de Casos y Controles , ChAdOx1 nCoV-19/uso terapéutico , Humanos , Inmunización Secundaria/efectos adversos , SARS-CoV-2/genética
6.
Nature ; 555(7698): 611-616, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29562236

RESUMEN

We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders.


Asunto(s)
Mutación , Trastornos del Neurodesarrollo/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Encéfalo/metabolismo , Secuencia Conservada , Discapacidades del Desarrollo/genética , Evolución Molecular , Exoma , Femenino , Feto/metabolismo , Humanos , Masculino
7.
Nature ; 562(7726): 268-271, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258228

RESUMEN

There are thousands of rare human disorders that are caused by single deleterious, protein-coding genetic variants1. However, patients with the same genetic defect can have different clinical presentations2-4, and some individuals who carry known disease-causing variants can appear unaffected5. Here, to understand what explains these differences, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders such as global developmental delay and autism, often in combination with abnormalities of other organ systems. Although the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome-wide common variant burden by showing, in an independent sample of 728 trios (comprising a child plus both parents) from the same cohort, that this burden is over-transmitted from parents to children with neurodevelopmental disorders. Our common-variant signal is significantly positively correlated with genetic predisposition to lower educational attainment, decreased intelligence and risk of schizophrenia. We found that common-variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, which suggests that common-variant risk affects patients both with and without a monogenic diagnosis. In addition, previously published common-variant scores for autism, height, birth weight and intracranial volume were all correlated with these traits within our cohort, which suggests that phenotypic expression in individuals with monogenic disorders is affected by the same variants as in the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders that are typically considered to be monogenic.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/genética , Enfermedades Raras/genética , Trastorno Autístico/genética , Peso al Nacer/genética , Estatura/genética , Estudios de Casos y Controles , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inteligencia/genética , Desequilibrio de Ligamiento , Masculino , Herencia Multifactorial/genética , Fenotipo , Esquizofrenia/genética
8.
J Pharmacokinet Pharmacodyn ; 51(1): 5-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37573528

RESUMEN

The current demand for pharmacometricians outmatches the supply provided by academic institutions and considerable investments are made to develop the competencies of these scientists on-the-job. Even with the observed increase in academic programs related to pharmacometrics, this need is unlikely to change in the foreseeable future, as the demand and scope of pharmacometrics applications keep expanding. Further, the field of pharmacometrics is changing. The field largely started when Lewis Sheiner and Stuart Beal published their seminal papers on population pharmacokinetics in the late 1970's and early 1980's and has continued to grow in impact and use since its inception. Physiological-based pharmacokinetics and systems pharmacology have grown rapidly in scope and impact in the last decade and machine learning is just on the horizon. While all these methodologies are categorized as pharmacometrics, no one person can be an expert in everything. So how do you train future pharmacometricians? Leading experts in academia, industry, contract research organizations, clinical medicine, and regulatory gave their opinions on how to best train future pharmacometricians. Their opinions were collected and synthesized to create some general recommendations.


Asunto(s)
Farmacología , Humanos , Farmacocinética , Selección de Profesión
10.
Nature ; 547(7662): 173-178, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28658209

RESUMEN

Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn's disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Enfermedades Inflamatorias del Intestino/genética , Sitios de Carácter Cuantitativo/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Sitios de Unión , Cromatina/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Epigénesis Genética/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Proteína smad3/genética , Factores de Transcripción/metabolismo , Adulto Joven
11.
Nucleic Acids Res ; 49(D1): D1311-D1320, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33045747

RESUMEN

Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Enfermedades Inflamatorias del Intestino/genética , Terapia Molecular Dirigida/métodos , Sitios de Carácter Cuantitativo , Programas Informáticos , Cromatina/química , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Internet , Fenotipo , Carácter Cuantitativo Heredable
12.
J Pharmacokinet Pharmacodyn ; 50(6): 507-519, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37131052

RESUMEN

Rare disease drug development is wrought with challenges not the least of which is access to the limited data currently available throughout the rare disease ecosystem where sharing of the available data is not guaranteed. Most pharmaceutical sponsors seeking to develop agents to treat rare diseases will initiate data landscaping efforts to identify various data sources that might be informative with respect to disease prevalence, patient selection and identification, disease progression and any data projecting likelihood of patient response to therapy including any genetic data. Such data are often difficult to come by for highly prevalent, mainstream disease populations let alone for the 8000 rare disease that make up the pooled patient population of rare disease patients. The future of rare disease drug development will hopefully rely on increased data sharing and collaboration among the entire rare disease ecosystem. One path to achieving this outcome has been the development of the rare disease cures accelerator, data analytics platform (RDCA-DAP) funded by the US FDA and operationalized by the Critical Path Institute. FDA intentions were clearly focused on improving the quality of rare disease regulatory applications by sponsors seeking to develop treatment options for various rare disease populations. As this initiative moves into its second year of operations it is envisioned that the increased connectivity to new and diverse data streams and tools will result in solutions that benefit the entire rare disease ecosystem and that the platform becomes a Collaboratory for engagement of this ecosystem that also includes patients and caregivers.


Asunto(s)
Enfermedades Raras , Humanos , Ciencia de los Datos , Progresión de la Enfermedad , Enfermedades Raras/tratamiento farmacológico
13.
Genome Res ; 29(7): 1047-1056, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227601

RESUMEN

Approximately 2% of de novo single-nucleotide variants (SNVs) appear as part of clustered mutations that create multinucleotide variants (MNVs). MNVs are an important source of genomic variability as they are more likely to alter an encoded protein than a SNV, which has important implications in disease as well as evolution. Previous studies of MNVs have focused on their mutational origins and have not systematically evaluated their functional impact and contribution to disease. We identified 69,940 MNVs and 91 de novo MNVs in 6688 exome-sequenced parent-offspring trios from the Deciphering Developmental Disorders Study comprising families with severe developmental disorders. We replicated the previously described MNV mutational signatures associated with DNA polymerase zeta, an error-prone translesion polymerase, and the APOBEC family of DNA deaminases. We estimate the simultaneous MNV germline mutation rate to be 1.78 × 10-10 mutations per base pair per generation. We found that most MNVs within a single codon create a missense change that could not have been created by a SNV. MNV-induced missense changes were, on average, more physicochemically divergent, were more depleted in highly constrained genes (pLI ≥ 0.9), and were under stronger purifying selection compared with SNV-induced missense changes. We found that de novo MNVs were significantly enriched in genes previously associated with developmental disorders in affected children. This shows that MNVs can be more damaging than SNVs even when both induce missense changes, and are an important variant type to consider in relation to human disease.


Asunto(s)
Discapacidades del Desarrollo/genética , Exoma , Mutación , Niño , Análisis Mutacional de ADN , Humanos , Tasa de Mutación , Mutación Missense , Nucleótidos , Polimorfismo de Nucleótido Simple
14.
Genome Res ; 29(2): 159-170, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30587507

RESUMEN

Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%-40% of pathogenic variants in noncanonical splice site positions are missing from public databases.


Asunto(s)
Discapacidades del Desarrollo/genética , Mutación , Sitios de Empalme de ARN , Exoma , Humanos , Secuenciación del Exoma
15.
Pharm Res ; 39(8): 1803-1815, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35411507

RESUMEN

The use of Disease progression models (DPMs) in Drug Development has been widely adopted across therapeutic areas as a method for integrating previously obtained disease knowledge to elucidate the impact of novel therapeutics or vaccines on disease course, thus quantifying the potential clinical benefit at different stages of drug development programs. This paper provides a brief overview of DPMs and the evolution in data types, analytic methods, and applications that have occurred in their use by Quantitive Clinical Pharmacologists. It also provides examples of how these models have informed decisions and clinical trial design across several therapeutic areas and at various stages of development. It briefly describes potential new applications of DPMs utilizing emerging data sources, and utilizing new analytic techniques, and discuss new challenges faced such as requiring description of multiple endpoints, rapid model development, application of machine learning-based analytics, and use of high dimensional and real-world data. Considerations for the continued evolution future of DPMs to serve as community-maintained expert systems are also provided.


Asunto(s)
Progresión de la Enfermedad , Desarrollo de Medicamentos , Ensayos Clínicos como Asunto , Humanos , Proyectos de Investigación
17.
Gastroenterology ; 158(1): 189-199, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600487

RESUMEN

BACKGROUND & AIMS: Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies. METHODS: We performed a genome-wide association study to identify variants associated with time to development of anti-drug antibodies in a discovery cohort of 1240 biologic-naïve patients with Crohn's disease starting infliximab or adalimumab therapy. Immunogenicity was defined as an anti-drug antibody titer ≥10 AU/mL using a drug-tolerant enzyme-linked immunosorbent assay. Significant association signals were confirmed in a replication cohort of 178 patients with inflammatory bowel disease. RESULTS: The HLA-DQA1*05 allele, carried by approximately 40% of Europeans, significantly increased the rate of immunogenicity (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60-2.25; P = 5.88 × 10-13). The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated with infliximab monotherapy who carried HLA-DQA1*05; conversely the lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with adalimumab combination therapy who did not carry HLA-DQA1*05. We confirmed this finding in the replication cohort (HR, 2.00; 95% CI, 1.35-2.98; P = 6.60 × 10-4). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32-2.70) or infliximab (HR, 1.92; 95% CI, 1.57-2.33), and for patients treated with anti-TNF therapy alone (HR, 1.75; 95% CI, 1.37-2.22) or in combination with an immunomodulator (HR, 2.01; 95% CI, 1.57-2.58). CONCLUSIONS: In an observational study, we found a genome-wide significant association between HLA-DQA1*05 and the development of antibodies against anti-TNF agents. A randomized controlled biomarker trial is required to determine whether pretreatment testing for HLA-DQA1*05 improves patient outcomes by helping physicians select anti-TNF and combination therapies. ClinicalTrials.gov ID: NCT03088449.


Asunto(s)
Adalimumab/inmunología , Enfermedad de Crohn/terapia , Cadenas alfa de HLA-DQ/genética , Infliximab/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adalimumab/uso terapéutico , Adulto , Alelos , Enfermedad de Crohn/sangre , Femenino , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Infliximab/uso terapéutico , Masculino , Persona de Mediana Edad , Selección de Paciente , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
18.
Br J Clin Pharmacol ; 87(9): 3462-3480, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33125791

RESUMEN

AIM: Repurposing strategies to address the COVID-19 pandemic have been accelerated. As both pregnant and paediatric patients are likely to be excluded from most planned investigations, the list of repurposed options and the available data on these drugs and vaccines provide a baseline risk assessment and identify gaps for targeted investigation. METHODS: Clinical trials have been searched and reviewed; 23 repurposed drugs and drug combinations and nine candidate vaccines have been assessed regarding the availability of relevant data in paediatrics and pregnant women and to evaluate expected or unanticipated risk. RESULTS: Thirteen of the repurposed drugs or drug combinations are indicated for use in paediatrics in some age category albeit for indications other than COVID-19; 10 of these are indicated for use in pregnant women. Even in cases where these drugs are indicated in the populations, source data from which safety and or dosing could be extrapolated for use in COVID-19 is sparse. Vaccine trials are ongoing and generally exclude pregnant women; only in a few instances have paediatric subgroups been planned for enrolment. Data from individual case studies and RWD may suggest that subpopulations of both paediatric patients and pregnant women may be more at risk, particularly those in an increased inflammatory state. CONCLUSION: In conjunction with more prospective collaboration, plans are evolving to ensure that we will be better prepared to address similar situations especially in paediatrics and pregnant women where experience is limited and actual practice relies heavily on leveraging data from other populations and indications.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Antivirales/efectos adversos , Niño , Ensayos Clínicos como Asunto , Combinación de Medicamentos , Femenino , Humanos , Pandemias , Embarazo , Mujeres Embarazadas , Estudios Prospectivos , Medición de Riesgo
19.
Nat Rev Genet ; 16(10): 561-2, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26370900

RESUMEN

Jeffrey Barrett, Ian Dunham and Ewan Birney discuss the initiatives of the newly founded Centre for Therapeutic Target Validation, including a range of approaches to use human genetics to inform drug discovery and make better medicines.


Asunto(s)
Descubrimiento de Drogas/métodos , Genética Médica/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedad de Crohn/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Cooperación Internacional , Proteína smad7/genética
20.
Nature ; 526(7571): 82-90, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367797

RESUMEN

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.


Asunto(s)
Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Salud , Adiponectina/sangre , Alelos , Estudios de Cohortes , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Receptores de LDL/genética , Estándares de Referencia , Análisis de Secuencia de ADN , Triglicéridos/sangre , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA