Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 298(6): 102012, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525271

RESUMEN

Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi's sarcoma-associated herpes virus pathogenesis where it is essential for the survival of primary effusion lymphoma. Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilized, high molecular weight vFLIP-IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP-induced NF-κB activation pivots on the formation of structurally specific vFLIP-IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilized by endogenous cytokines and cellular FLIP homologues.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Activación Enzimática/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Oncogénicas/metabolismo , Sarcoma de Kaposi/enzimología , Sarcoma de Kaposi/virología , Proteínas Virales/metabolismo
2.
Nucleic Acids Res ; 46(8): 4286-4300, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29596604

RESUMEN

Efficient γ-herpesvirus lytic phase replication requires a virally encoded UNG-type uracil-DNA glycosylase as a structural element of the viral replisome. Uniquely, γ-herpesvirus UNGs carry a seven or eight residue insertion of variable sequence in the otherwise highly conserved minor-groove DNA binding loop. In Epstein-Barr Virus [HHV-4] UNG, this motif forms a disc-shaped loop structure of unclear significance. To ascertain the biological role of the loop insertion, we determined the crystal structure of Kaposi's sarcoma-associated herpesvirus [HHV-8] UNG (kUNG) in its product complex with a uracil-containing dsDNA, as well as two structures of kUNG in its apo state. We find the disc-like conformation is conserved, but only when the kUNG DNA-binding cleft is occupied. Surprisingly, kUNG uses this structure to flip the orphaned partner base of the substrate deoxyuridine out of the DNA duplex while retaining canonical UNG deoxyuridine-flipping and catalysis. The orphan base is stably posed in the DNA major groove which, due to DNA backbone manipulation by kUNG, is more open than in other UNG-dsDNA structures. Mutagenesis suggests a model in which the kUNG loop is pinned outside the DNA-binding cleft until DNA docking promotes rigid structuring of the loop and duplex nucleotide flipping, a novel observation for UNGs.


Asunto(s)
ADN/química , Herpesvirus Humano 8/enzimología , Uracil-ADN Glicosidasa/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , ADN/metabolismo , Herpesvirus Humano 4/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Uracil-ADN Glicosidasa/metabolismo
3.
Nucleic Acids Res ; 45(8): 4756-4767, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28132029

RESUMEN

Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated.


Asunto(s)
Herpesvirus Humano 8/química , Proteínas de Unión al ARN/química , ARN/química , Factores de Transcripción SOXB1/química , Cristalografía por Rayos X , Expresión Génica , Herpesvirus Humano 8/genética , Interacciones Huésped-Patógeno/genética , Humanos , Estadios del Ciclo de Vida/genética , Conformación Proteica , ARN Mensajero/genética , Factores de Transcripción SOXB1/genética
4.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931678

RESUMEN

Primary effusion lymphoma (PEL) is a lymphogenic disorder associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Key to the survival and proliferation of PEL is the canonical NF-κB pathway, which becomes constitutively activated following overexpression of the viral oncoprotein KSHV vFLIP (ks-vFLIP). This arises from its capacity to form a complex with the modulatory subunit of the IκB kinase (IKK) kinase, IKKγ (or NEMO), resulting in the overproduction of proteins that promote cellular survival and prevent apoptosis, both of which are important drivers of tumorigenesis. Using a combination of cell-based and biophysical assays together with structural techniques, we showed that the observed resistance to cell death is largely independent of autophagy or major death receptor signaling pathways and demonstrated that direct targeting of the ks-vFLIP-IKKγ interaction both in cells and in vitro can be achieved using IKKγ-mimetic peptides. Our results further reveal that these peptides not only induce cell killing but also potently sensitize PEL to the proapoptotic agents tumor necrosis factor alpha and etoposide and are the first to confirm ks-vFLIP as a tractable target for the treatment of PEL and related disorders.IMPORTANCE KSHV vFLIP (ks-vFLIP) has been shown to have a crucial role in cellular transformation, in which it is vital for the survival and proliferation of primary effusion lymphoma (PEL), an aggressive malignancy associated with infection that is resistant to the majority of chemotherapeutic drugs. It operates via subversion of the canonical NF-κB pathway, which requires a physical interaction between ks-vFLIP and the IKK kinase modulatory subunit IKKγ. While this interaction has been directly linked to protection against apoptosis, it is unclear whether the suppression of other cell death pathways implicated in ks-vFLIP pathogenesis is an additional contributor. We demonstrate that the interaction between ks-vFLIP and IKKγ is pivotal in conferring resistance to apoptosis. Additionally, we show that the ks-vFLIP-IKKγ complex can be disrupted using peptides leading to direct killing and the sensitization of PEL cells to proapoptotic agents. Our studies thus provide a framework for future therapeutic interventions.


Asunto(s)
Apoptosis , Herpesvirus Humano 8/fisiología , Quinasa I-kappa B/química , Péptidos/metabolismo , Péptidos/farmacología , Sarcoma de Kaposi/virología , Autofagia , Etopósido/farmacología , Herpesvirus Humano 8/química , Humanos , Quinasa I-kappa B/metabolismo , Células Jurkat , Imitación Molecular , Péptidos/química , Unión Proteica , Sarcoma de Kaposi/fisiopatología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Virales/metabolismo
5.
J Biol Chem ; 291(14): 7608-20, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26865630

RESUMEN

The viral FLICE-like inhibitory protein (FLIP) protein from Kaposi sarcoma-associated herpesvirus activates the NF-κB pathway by forming a stable complex with a central region (amino acids 150-272) of the inhibitor of NF-κB kinase (IKK) γ subunits, thereby activating IKK. Cellular FLIP (cFLIP) forms are also known to activate the NF-κB pathway via IKK activation. Here we demonstrate that cFLIPL, cFLIPS, and their proteolytic product p22-FLIP all require the C-terminal region of NEMO/IKKγ (amino acids 272-419) and its ubiquitin binding function for activation of the IKK kinase (or kinase complex), but none form a stable complex with IKKγ. Our results further reveal that cFLIPLrequires the linear ubiquitin chain assembly complex and the kinase TAK1 for activation of the IKK kinase. Similarly, cFLIPSand p22-FLIP also require TAK1 but do not require LUBAC. In contrast, these isoforms are both components of complexes that incorporate Fas-associated death domain and RIP1, which appear essential for kinase activation. This conservation of IKK activation among the cFLIP family using different mechanisms suggests that the mechanism plays a critical role in their function.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Activación Enzimática/fisiología , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
6.
J Biol Chem ; 290(27): 16539-49, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25979343

RESUMEN

Viral flice-interacting protein (vFLIP), encoded by the oncogenic Kaposi sarcoma-associated herpes virus (KSHV), constitutively activates the canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway. This is achieved through subversion of the IκB kinase (IKK) complex (or signalosome), which involves a physical interaction between vFLIP and the modulatory subunit IKKγ. Although this interaction has been examined both in vivo and in vitro, the mechanism by which vFLIP activates the kinase remains to be determined. Because IKKγ functions as a scaffold, recruiting both vFLIP and the IKKα/ß subunits, it has been proposed that binding of vFLIP could trigger a structural rearrangement in IKKγ conducive to activation. To investigate this hypothesis we engineered a series of mutants along the length of the IKKγ molecule that could be individually modified with nitroxide spin labels. Subsequent distance measurements using electron paramagnetic resonance spectroscopy combined with molecular modeling and molecular dynamics simulations revealed that IKKγ is a parallel coiled-coil whose response to binding of vFLIP or IKKß is localized twisting/stiffening and not large-scale rearrangements. The coiled-coil comprises N- and C-terminal regions with distinct registers accommodated by a twist: this structural motif is exploited by vFLIP, allowing it to bind and subsequently activate the NF-κB pathway. In vivo assays confirm that NF-κB activation by vFLIP only requires the N-terminal region up to the transition between the registers, which is located directly C-terminal of the vFLIP binding site.


Asunto(s)
Herpesvirus Humano 8/metabolismo , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Sarcoma de Kaposi/enzimología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Quinasa I-kappa B/genética , Unión Proteica , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virología , Proteínas Virales/química , Proteínas Virales/genética
7.
Mol Cell ; 30(5): 620-31, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538660

RESUMEN

Key to the pathogenicity of several viruses is activation of the canonical nuclear factor-kappaB (NF-kappaB) transcriptional pathway. Subversion of this tightly regulated mechanism is achieved through the production of host mimetic viral proteins that deregulate the transcription process. One such protein is ks-vFLIP (produced by the Kaposi's sarcoma herpes virus [KSHV]), which associates with IKKgamma, an essential component of the IKK complex or signalosome. This interaction renders the canonical NF-kappaB pathway constitutively active and has been linked to Kaposi's sarcoma and other malignancies. In order to elucidate the molecular basis underpinning ks-vFLIP-induced activation of the IKK signalosome, we have determined the crystal structure of a complex involving a fragment of IKKgamma bound to ks-vFLIP at 3.2 A. In addition to identifying and subsequently probing the ks-vFLIP-IKKgamma interface, we have also investigated the effects of a mutation implicated in the genetic disorder anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID).


Asunto(s)
Herpesvirus Humano 8/fisiología , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Transducción de Señal , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Herpesvirus Humano 8/genética , Humanos , Quinasa I-kappa B/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , FN-kappa B/metabolismo , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Proteínas Virales/genética
8.
Nucleic Acids Res ; 40(17): 8743-58, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753105

RESUMEN

UvrB has a central role in the highly conserved UvrABC pathway functioning not only as a damage recognition element but also as an essential component of the lesion tracking machinery. While it has been recently confirmed that the tracking assembly comprises a UvrA2B2 heterotetramer, the configurations of the damage engagement and UvrB-DNA handover complexes remain obscure. Here, we present the first crystal structure of a UvrB dimer whose biological significance has been verified using both chemical cross-linking and electron paramagnetic resonance spectroscopy. We demonstrate that this dimeric species stably associates with UvrA and forms a UvrA2B2-DNA complex. Our studies also illustrate how signals are transduced between the ATP and DNA binding sites to generate the helicase activity pivotal to handover and formation of the UvrB2-DNA complex, providing key insights into the configurations of these important repair intermediates.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , ADN/química , Adenosina Trifosfato/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína
9.
Nucleic Acids Res ; 39(13): 5744-56, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21421561

RESUMEN

The early lytic phase of Kaposi's sarcoma herpesvirus infection is characterized by viral replication and the global degradation (shutoff) of host mRNA. Key to both activities is the virally encoded alkaline exonuclease KSHV SOX. While the DNase activity of KSHV SOX is required for the resolution of viral genomic DNA as a precursor to encapsidation, its exact involvement in host shutoff remains to be determined. We present the first crystal structure of a KSHV SOX-DNA complex that has illuminated the catalytic mechanism underpinning both its endo and exonuclease activities. We further illustrate that KSHV SOX, similar to its Epstein-Barr virus homologue, has an intrinsic RNase activity in vitro that although an element of host shutoff, cannot solely account for the phenomenon.


Asunto(s)
ADN/química , Exodesoxirribonucleasas/química , Herpesvirus Humano 8/enzimología , Proteínas Virales/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía , ADN/metabolismo , Proteínas de Unión al ADN/química , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Ribonucleasas/metabolismo , Alineación de Secuencia , Proteínas Virales/metabolismo
10.
J Virol ; 85(14): 7444-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21593170

RESUMEN

Activation of IκB kinase subunit γ (IKKγ), a key regulator of the classical NF-κB pathway, by the vFLIP protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and the Tax protein of human T cell lymphotropic virus type 1 (HTLV1) is essential for virus-associated cancer. We show that vFLIP and Tax activate this pathway by different interactions with IKKγ and independently of the ubiquitin-mediated signaling pathways induced by cytokines. Our data provide new insights into the mechanisms by which IKKγ can be activated and show that NF-κB activation by oncogenic viruses can be targeted without affecting physiologically important pathways.


Asunto(s)
Citocinas/fisiología , Herpesvirus Humano 6/fisiología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Quinasa I-kappa B/metabolismo , Sarcoma de Kaposi/virología , Proteínas Virales/fisiología , Herpesvirus Humano 6/metabolismo , Humanos , Quinasa I-kappa B/química
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1492-7, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139150

RESUMEN

The intrinsic propensity of α(1)-antitrypsin to undergo conformational transitions from its metastable native state to hyperstable forms provides a motive force for its antiprotease function. However, aberrant conformational change can also occur via an intermolecular linkage that results in polymerization. This has both loss-of-function and gain-of-function effects that lead to deficiency of the protein in human circulation, emphysema and hepatic cirrhosis. One of the most promising therapeutic strategies being developed to treat this disease targets small molecules to an allosteric site in the α(1)-antitrypsin molecule. Partial filling of this site impedes polymerization without abolishing function. Drug development can be improved by optimizing data on the structure and dynamics of this site. A new 1.8 Å resolution structure of α(1)-antitrypsin demonstrates structural variability within this site, with associated fluctuations in its upper and lower entrance grooves and ligand-binding characteristics around the innermost stable enclosed hydrophobic recess. These data will allow a broader selection of chemotypes and derivatives to be tested in silico and in vitro when screening and developing compounds to modulate conformational change to block the pathological mechanism while preserving function.


Asunto(s)
alfa 1-Antitripsina/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
13.
Retrovirology ; 5: 95, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18928553

RESUMEN

Cofilin is an actin-depolymerizing factor that regulates actin dynamics critical for T cell migration and T cell activation. In unstimulated resting CD4 T cells, cofilin exists largely as a phosphorylated inactive form. Previously, we demonstrated that during HIV-1 infection of resting CD4 T cells, the viral envelope-CXCR4 signaling activates cofilin to overcome the static cortical actin restriction. In this pilot study, we have extended this in vitro observation and examined cofilin phosphorylation in resting CD4 T cells purified from the peripheral blood of HIV-1-infected patients. Here, we report that the resting T cells from infected patients carry significantly higher levels of active cofilin, suggesting that these resting cells have been primed in vivo in cofilin activity to facilitate HIV-1 infection. HIV-1-mediated aberrant activation of cofilin may also lead to abnormalities in T cell migration and activation that could contribute to viral pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Cofilina 1/genética , Cofilina 1/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Activación Transcripcional , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Cofilina 1/inmunología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Activación de Linfocitos , Fosforilación
14.
J Mol Biol ; 357(1): 62-72, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16426634

RESUMEN

The UvrABC pathway is a ubiquitously occurring mechanism targeted towards the repair of bulky base damage. Key to this process is UvrB, a DNA-dependent limited helicase that acts as a lesion recognition element whilst part of a tracking complex involving UvrA, and as a DNA-binding platform required for the presentation of damage to UvrC for subsequent processing. We have been able to determine the structure of a ternary complex involving UvrB* (a C-terminal truncation of full-length UvrB), a polythymine trinucleotide and ADP. This structure has highlighted the roles of key conserved residues in DNA binding distinct from those of the beta-hairpin, where most of the attention in previous studies has been focussed. We are also the first to report the structural basis underlying conformational re-modelling of the beta-hairpin that is absolutely required for DNA binding and how this event results in an ATPase primed for catalysis. Our data provide the first insights at the molecular level into the transformation of UvrB into an active helicase.


Asunto(s)
Adenosina Trifosfatasas/química , Bacillus subtilis/enzimología , Bacillus/enzimología , Proteínas Bacterianas/química , ADN Helicasas/química , Estructura Terciaria de Proteína , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Bacillus/genética , Bacillus subtilis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Thermus thermophilus/enzimología , Thermus thermophilus/genética
15.
FEBS Lett ; 580(27): 6423-7, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17097086

RESUMEN

UvrB is the damage recognition element of the highly conserved UvrABC pathway that functions in the removal of bulky DNA adducts. Pivotal to this is the formation of a damage detection complex that relies on the ability of UvrB to locate and sequester diverse lesions. Whilst structures of UvrB bound to DNA have recently been reported, none address the issue of lesion recognition. Here, we describe the crystal structure of UvrB bound to a pentanucleotide containing a single fluorescein-adducted thymine that reveals a unique mechanism for damage detection entirely dependent on the exclusion of lesions larger than an undamaged nucleotide.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Modelos Moleculares , Oligodesoxirribonucleótidos/metabolismo , Cristalografía por Rayos X/métodos , Aductos de ADN/química , Aductos de ADN/metabolismo , ADN Helicasas/química , Endodesoxirribonucleasas/química , Proteínas de Escherichia coli/química , Oligodesoxirribonucleótidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
J Mol Biol ; 317(2): 171-7, 2002 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-11902834

RESUMEN

Both 8oxo-guanine and formamidopyrimidines are major products of oxidative DNA damage that can result in the fixation of transversion mutations following replication if left unrepaired. These lesions are targeted by the N-DNA glycosylase hOgg1, which catalyses excision of the aberrant base followed by cleavage of the phosphate backbone directly 5' to the resultant abasic site in a context, dependent manner. We present the crystal structure of native hOgg1 refined to 2.15 A resolution that reveals a number of highly significant conformational changes on association with DNA that are clearly required for substrate recognition and specificity. Changes of this magnitude appear to be unique to hOgg1 and have not been observed in any of the DNA-glycosylase structures analysed to date where both native and DNA-bound forms are available. It has been possible to identify a mechanism whereby the catalytic residue Lys 249 is "primed" for nucleophilic attack of the N-glycosidic bond.


Asunto(s)
Guanina/análogos & derivados , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa , Activación Enzimática , Guanina/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/genética , Conformación Proteica
17.
Structure ; 20(8): 1321-31, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22748767

RESUMEN

The TIP49a and TIP49b proteins belong to the family of AAA+ ATPases and play essential roles in vital processes such as transcription, DNA repair, snoRNP biogenesis, and chromatin remodeling. We report the crystal structure of a TIP49b hexamer and the comparative analysis of large-scale conformational flexibility of TIP49a, TIP49b, and TIP49a/TIP49b complexes using molecular modeling and molecular dynamics simulations in a water environment. Our results establish key principles of domain mobility that affect protein conformation and biochemical properties, including a mechanistic basis for the downregulation of ATPase activity upon protein hexamerization. These approaches, applied to the lik-TIP49b mutant reported to possess enhanced DNA-independent ATPase activity, help explain how a three-amino acid insertion remotely affects the structure and conformational dynamics of the ATP binding and hydrolysis pocket while uncoupling ATP hydrolysis from DNA binding. This might be similar to the effects of conformations adopted by TIP49 heterohexamers.


Asunto(s)
Proteínas Portadoras/química , ADN Helicasas/química , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato/química , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Enlace de Hidrógeno , Hidrólisis , Simulación de Dinámica Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
18.
Structure ; 20(3): 504-12, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22405009

RESUMEN

In conformational diseases, native protein conformers convert to pathological intermediates that polymerize. Structural characterization of these key intermediates is challenging. They are unstable and minimally populated in dynamic equilibria that may be perturbed by many analytical techniques. We have characterized a forme fruste deficiency variant of α(1)-antitrypsin (Lys154Asn) that forms polymers recapitulating the conformer-specific neo-epitope observed in polymers that form in vivo. Lys154Asn α(1)-antitrypsin populates an intermediate ensemble along the polymerization pathway at physiological temperatures. Nuclear magnetic resonance spectroscopy was used to report the structural and dynamic changes associated with this. Our data highlight an interaction network likely to regulate conformational change and do not support the recent contention that the disease-relevant intermediate is substantially unfolded. Conformational disease intermediates may best be defined using powerful but minimally perturbing techniques, mild disease mutants, and physiological conditions.


Asunto(s)
Epítopos/genética , Modelos Moleculares , Conformación Proteica , Deficiencias en la Proteostasis/genética , alfa 1-Antitripsina/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Polimerizacion , Deficiencias en la Proteostasis/patología , alfa 1-Antitripsina/genética
19.
J Mol Biol ; 387(4): 857-68, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19232354

RESUMEN

The common Z mutant (Glu342Lys) of alpha(1)-antitrypsin results in the formation of polymers that are retained within hepatocytes. This causes liver disease whilst the plasma deficiency of an important proteinase inhibitor predisposes to emphysema. The Thr114Phe and Gly117Phe mutations border a surface cavity identified as a target for rational drug design. These mutations preserve inhibitory activity but reduce the polymerisation of wild-type native alpha(1)-antitrypsin in vitro and increase secretion in a Xenopus oocyte model of disease. To understand these effects, we have crystallised both mutants and solved their structures. The 2.2 A structure of Thr114Phe alpha(1)-antitrypsin demonstrates that the effects of the mutation are mediated entirely by well-defined partial cavity blockade and allows in silico screening of fragments capable of mimicking the effects of the mutation. The Gly117Phe mutation operates differently, repacking aromatic side chains in the helix F-beta-sheet A interface to induce a half-turn downward shift of the adjacent F helix. We have further characterised the effects of these two mutations in combination with the Z mutation in a eukaryotic cell model of disease. Both mutations increase the secretion of Z alpha(1)-antitrypsin in the native conformation, but the double mutants remain more polymerogenic than the wild-type (M) protein. Taken together, these data support different mechanisms by which the Thr114Phe and Gly117Phe mutations stabilise the native fold of alpha(1)-antitrypsin and increase secretion of monomeric protein in cell models of disease.


Asunto(s)
alfa 1-Antitripsina/química , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Diseño de Fármacos , Femenino , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutación Missense , Oocitos/metabolismo , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Xenopus , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA