Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Methods ; 15(2): 154-163, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36533314

RESUMEN

This work investigated the potential of microwave-induced plasma optical emission spectrometry (MIP-OES) for urine analysis using a complex matrix containing carbon and high concentrations of easily ionizable elements (EIEs). The goals were to study interferences originating from the urine matrix for 14 analytes with total energies varying from 1.85 to 12.07 eV, along with strategies to correct matrix effects and compare the results with those reported in the literature using inductively coupled plasma optical emission spectrometry (ICP-OES). It was found that the urine matrix caused suppression of the signals for some elements and increased them for others. Therefore, an internal standardization calibration method and three levels of dilution, i.e., 2-, 20-, and 200-fold, were applied as strategies to correct non-spectral interferences. Also, Ga, Ge, Pd, Rh, Sc and Y and four molecular species present in the nitrogen plasma (i.e., CN, N2, N2+, and OH) were investigated as potential internal standards (ISs). The accuracy and precision were evaluated by addition and recovery experiments and best results were obtained using ISs Ge, Rh and Sc for 20-fold dilution and N2+ for 200-fold dilution. The LODs ranged from 0.33 to 329 µg L-1 and deviations were lower than 11%. The combined use of these strategies led to successful urine analysis for a spiked sample by MIP-OES.


Asunto(s)
Análisis Espectral , Límite de Detección
2.
Heliyon ; 6(2): e03359, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32083212

RESUMEN

Elemental impurities in drug samples can generate unwanted pharmacological-toxicological effects, therefore they must be carefully monitored. In order to update the elemental analysis of pharmaceutical products, new regulations for elemental impurities were published by the United States Pharmacopoeia (USP). This work presents elemental analysis of 23 analytes in omeprazole drug samples from seven different commercial brands considering reference, similar and generic medicines using inductively coupled plasma mass spectrometry (ICP-MS). Microwave-assisted digestion using 2.0 mol L-1 HNO3 (partial digestion) was applied successfully for omeprazole drugs. Most analytes were below the respective limits of quantification, except for As, Ba, Cd, Co, Cu, Cr, Li, Mo, Ni, Pb, Sb and V. However, the determined concentrations for these analytes were lower than the limits proposed by the USP Chapter 232 and similar for all products, inferring that for the seven analyzed samples there is no difference among reference, similar and generic drugs considering contaminants contents. Discussions considering potential risks of elemental contamination taking into account diverse brands were presented.

3.
Anal Chim Acta ; 1065: 1-11, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31005141

RESUMEN

This work proposed a procedure for microwave-assisted sample preparation of medicines using diluted nitric acid followed by determination of elemental impurities using inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS) according to the United States Pharmacopeia Chapters 232 and 233. Three solutions, i.e. inverse aqua regia, 7.0 and 2.0 mol L-1 HNO3, were evaluated for microwave-assisted digestion of nine drugs samples. The applicability of each digestion procedure was assessed by comparison of analyte concentrations determined using total (reference procedure) and partial digestions (proposed procedure) as well as by determining dissolved carbon content and evaluating matrix effects. There were none significant differences at a 95% confidence level among the concentrations determined applying reference and proposed procedures. Internal standardization (ICP OES) and aerosol dilution (ICP-MS) were applied for minimization and correction of matrix effects. Addition and recovery experiments were performed according to oral permissible daily exposures values specific for each element and each sample was spiked with element concentrations of 0.5J and 1.5J in order to check accuracies for 24 analytes. Recoveries ranged from 70 to 138% for ICP OES and from 72 to 128% for ICP-MS, for all elements but Os. All analytes were below the respective limits of quantification when applying all sample preparation procedures, except As, Ba, Co, Cu, Cr, Mo, Ni, Pb, Sb, Sn, Tl and V, however the determined concentrations for these elements were lower than the limits proposed by Chapter 232.


Asunto(s)
Microondas , Preparaciones Farmacéuticas/análisis , Farmacopeas como Asunto , Oligoelementos/análisis , Espectrometría de Masas , Ácido Nítrico/química , Comprimidos/análisis , Estados Unidos
4.
Front Chem ; 6: 504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483492

RESUMEN

Applications, advantages, and limitations of the traditional external standard calibration, matrix-matched calibration, internal standardization, and standard additions, as well as the non-traditional interference standard method, standard dilution analysis, multi-isotope calibration, and multispecies calibration methods are discussed.

5.
Talanta ; 178: 805-810, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136898

RESUMEN

This study investigated the capability of High Matrix Introduction (HMI) strategy for analysis of dialysis solution and urine samples using inductively coupled plasma mass spectrometry. The use of HMI enables the direct introduction of urine samples and dialysis solutions 2-fold diluted with 0.14molL-1 HNO3. Bismuth, Ge, Ir, Li, Pt, Rh, Sc and Tl were evaluated as internal standards for Al, Ag, As, Be, Cd, Cr, Pb, Sb, Se, Tl, and Hg determination in dialysis solution and As, Cd, Hg and Pb determination in urine samples. Helium collision cell mode (4.5mLmin-1) was efficient to overcome polyatomic interferences in As, Se and Cr determinations. Mercury memory effects were evaluated by washing with 0.12molL-1 HCl or an alkaline diluent solution prepared with n-butanol, NH4OH, EDTA, and Triton X-100. This later solution was efficient for avoiding Hg memory effects in 6h of analysis. Linear calibration curves were obtained for all analytes and detection limits were lower than maximum amounts allowed by Brazilian legislations. Recoveries for all analytes in dialysis solutions and urine samples ranged from 82% to 125% and relative standard deviations for all elements and samples were lower than 7%. Analysis of control internal urine samples was in agreement with certified values at 95% confidence level (t-test; p < 0.05).


Asunto(s)
Espectrometría de Masas/métodos , Metales Pesados/análisis , Aerosoles , Humanos , Espectrometría de Masas/normas , Metales Pesados/orina , Gases em Plasma/química , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA