RESUMEN
Fibroblast growth factor (FGF) signaling is vital for many biological processes, beginning with development. The importance of FGF signaling for skeleton formation was first discovered by the analysis of genetic FGFR mutations which cause several bone morphogenetic disorders, including achondroplasia, the most common form of human dwarfism. The formation of the long bones is mediated through proliferation and differentiation of highly specialized cells - chondrocytes.Chondrocytes respond to FGF with growth inhibition, a unique response which differs from the proliferative response of the majority of cell types; however, its molecular determinants are still unclear. Quantitative phosphoproteomic analysis was utilized to catalogue the proteins whose phosphorylation status is changed upon FGF1 treatment. The generated dataset consists of 756 proteins. We could localize the divergence between proliferative (canonical) and inhibitory (chondrocyte specific) FGF transduction pathways immediately upstream of AKT kinase. Gene Ontology (GO) analysis of the FGF1 regulated peptides revealed that many of the identified phosphorylated proteins are assigned to negative regulation clusters, in accordance with the observed inhibitory growth response. This is the first time a comprehensive subset of proteins involved in FGF inhibitory response is defined. We were able to identify a number of targets and specifically discover glycogen synthase kinase3ß (GSK3ß) as a novel key mediator of FGF inhibitory response in chondrocytes.
Asunto(s)
Condrocitos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Animales , Línea Celular Tumoral , Fosforilación , Proteómica , Ratas , Transducción de SeñalRESUMEN
The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Línea Celular Tumoral , Humanos , Células Madre Neoplásicas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción , Proteínas Señalizadoras YAPRESUMEN
Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.
Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Regiones Promotoras Genéticas , Animales , Sitios de Unión , Cromatina/química , Biología Computacional , Desoxirribonucleasa I/metabolismo , Células Madre Embrionarias/citología , Citometría de Flujo , Biblioteca de Genes , Genes Reporteros , Técnicas Genéticas , Genoma , Proteínas Fluorescentes Verdes/metabolismo , Factor 4 Similar a Kruppel , Lentivirus/genética , Lentivirus/metabolismo , Luciferasas/metabolismo , Ratones , Plásmidos/metabolismo , Transcripción Genética , TransgenesRESUMEN
The characterization of mesenchymal progenitors is central to understanding development, postnatal pathology and evolutionary adaptability. The precise identity of the mesenchymal precursors that generate the coronal suture, an important structural boundary in mammalian skull development, remains unclear. We show in mouse that coronal suture progenitors originate from hedgehog-responsive cephalic paraxial mesoderm (Mes) cells, which migrate rapidly to a supraorbital domain and establish a unidirectional lineage boundary with neural crest (NeuC) mesenchyme. Lineage tracing reveals clonal and stereotypical expansion of supraorbital mesenchymal cells to form the coronal suture between E11.0 and E13.5. We identify engrailed 1 (En1) as a necessary regulator of cell movement and NeuC/Mes lineage boundary positioning during coronal suture formation. In addition, we provide genetic evidence that En1 functions upstream of fibroblast growth factor receptor 2 (Fgfr2) in regulating early calvarial osteogenic differentiation, and postulate that it plays an additional role in precluding premature osteogenic conversion of the sutural mesenchyme.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Mesodermo/metabolismo , Cresta Neural/citología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Cruzamientos Genéticos , Femenino , Masculino , Ratones , Morfogénesis , Osteogénesis , Cráneo/embriología , Células Madre/citología , Factores de TiempoRESUMEN
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and ß-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.
Asunto(s)
Craneosinostosis/metabolismo , Modelos Animales de Enfermedad , Mesodermo/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Acrocefalosindactilia/genética , Acrocefalosindactilia/metabolismo , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Suturas Craneales/embriología , Suturas Craneales/crecimiento & desarrollo , Suturas Craneales/metabolismo , Craneosinostosis/genética , Regulación del Desarrollo de la Expresión Génica , Histocitoquímica , Humanos , Mesodermo/embriología , Mesodermo/crecimiento & desarrollo , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Cresta Neural/embriología , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Osteogénesis/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismoRESUMEN
FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Receptores Notch/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Ratones Desnudos , Células 3T3 NIH , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas S100/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , TransfecciónRESUMEN
Activating mutations of FGFRs1-3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form.
Asunto(s)
Apoptosis/fisiología , Craneosinostosis/embriología , Osteoblastos/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Células Madre/patología , Acrocefalosindactilia/embriología , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Craneosinostosis/genética , Craneosinostosis/patología , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Mutantes , Osteoblastos/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Células Madre/fisiologíaRESUMEN
Activating mutations in fibroblast growth factor receptor 2 (FGFR2) cause several craniosynostosis syndromes by affecting the proliferation and differentiation of osteoblasts, which form the calvarial bones. Osteoblasts respond to FGF with increased proliferation and inhibition of differentiation. We analyzed the gene expression profiles of osteoblasts expressing FGFR2 activating mutations (C342Y or S252W) and found a striking down-regulation of the expression of many Wnt target genes and a concomitant induction of the transcription factor Sox2. Most of these changes could be reproduced by treatment of osteoblasts with exogenous FGF. Wnt signals promote osteoblast function and regulate bone mass. Sox2 is expressed in calvarial osteoblasts in vivo and we show that constitutive expression of Sox2 inhibits osteoblast differentiation and causes down-regulation of the expression of numerous Wnt target genes. Sox2 associates with beta-catenin in osteoblasts and can inhibit the activity of a Wnt responsive reporter plasmid through its COOH-terminal domain. Our results indicate that FGF signaling could control many aspects of osteoblast differentiation through induction of Sox2 and regulation of the Wnt-beta-catenin pathway.
Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Transformada , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Reporteros/fisiología , Ratones , Mutación/fisiología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Estructura Terciaria de Proteína/fisiología , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción SOXB1 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Cráneo/anomalías , Cráneo/citología , Cráneo/metabolismo , Sinostosis/genética , Sinostosis/metabolismo , Sinostosis/fisiopatología , Transactivadores/genética , Factores de Transcripción/genética , Activación Transcripcional , Proteínas Wnt , beta CateninaRESUMEN
Activating mutations in FGF receptor 3 (FGFR3) cause several human dwarfism syndromes by affecting both chondrocyte proliferation and differentiation. Using microarray and biochemical analyses of FGF-treated rat chondrosarcoma chondrocytes, we show that FGF inhibits chondrocyte proliferation by initiating multiple pathways that result in the induction of antiproliferative functions and the down-regulation of growth-promoting molecules. The initiation of growth arrest is characterized by the rapid dephosphorylation of the retinoblastoma protein (pRb) p107 and repression of a subset of E2F target genes by a mechanism that is independent of cyclin E-Cdk inhibition. In contrast, hypophosphorylation of pRb and p130 occur after growth arrest is first detected, and may contribute to its maintenance. Importantly, we also find a number of gene expression changes indicating that FGF promotes many aspects of hypertrophic differentiation, a notion supported by in situ analysis of developing growth plates from mice expressing an activated form of FGFR3. Thus, FGF may coordinate the onset of differentiation with chondrocyte growth arrest in the developing growth plate.
Asunto(s)
Huesos/embriología , Cartílago/embriología , Proteínas de Ciclo Celular , Condrocitos/metabolismo , Proteínas de Unión al ADN , Factores de Crecimiento de Fibroblastos/metabolismo , Osteogénesis/genética , Proteínas Tirosina Quinasas , Animales , Huesos/citología , Huesos/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Diferenciación Celular/genética , División Celular/genética , Condrocitos/citología , Ciclina E/genética , Ciclina E/metabolismo , Regulación hacia Abajo/genética , Factores de Transcripción E2F , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reguladores/genética , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratas , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteína p107 Similar a la del Retinoblastoma , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales CultivadasRESUMEN
Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb-/- chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes.
Asunto(s)
Condrocitos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Proteínas , Transducción de Señal/fisiología , Animales , Huesos/citología , Huesos/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Células Cultivadas , Ratones , Mutación , Proteínas Nucleares/genética , Técnicas de Cultivo de Órganos , Fosfoproteínas/genética , Fosforilación , Proteína de Retinoblastoma/química , Proteína p107 Similar a la del Retinoblastoma , Proteína p130 Similar a la del RetinoblastomaRESUMEN
Skeletal development requires the correct balance of osteoblast proliferation, survival, and differentiation which is modulated by a network of signaling pathways and transcription factors. We have examined the role of the AKT (PKB), and ERK1/2 signaling pathways in the osteoblast response to FGFs, which inhibit differentiation, and to IGF-1 and Wnt signaling, which promote it. Using osteoblastic cell lines as well as primary calvarial osteoblasts, we show that ERK1/2 and AKT have distinct effects in FGF-induced osteoblast proliferation and differentiation. ERK1/2 is a primary mediator of FGF-induced proliferation, but also contributes to osteoblast differentiation, while AKT is important for osteoblast survival. Signaling by IGF-1, that promotes osteoblast differentiation, strongly activates AKT and weakly ERK1/2, while the opposite results are obtained with FGF, which inhibits differentiation. By introducing a constitutively active form of AKT, we found that increased AKT activity drives osteoblasts to differentiation. Increasing the AKT signal in osteoblasts that harbor FGFR2 activating mutations, found in Crouzon (342Y) and Apert (S22W) syndromes, is also able to drive differentiation in these cells, that normally fail to differentiate. Wnt signals, that promotes differentiation, also induce AKT phosphorylation, and cells expressing active AKT have increased levels of stabilized beta-catenin, a central molecule in Wnt signaling. Our results indicate that the relative strengths of ERK and AKT signaling pathways determine whether osteoblasts are driven into proliferation or differentiation, and that the effects of AKT may be due, in part, to synergy with the Wnt pathway as well as with the Runx2 transcription factor.
Asunto(s)
Osteoblastos/citología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Activación Enzimática , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Osteoblastos/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMEN
Fibroblast growth factors (FGFs) are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. The importance of the proper spatial and temporal regulation of FGF signals is evident from human and mouse genetic studies which show that mutations leading to the dysregulation of FGF signals cause a variety of developmental disorders including dominant skeletal diseases and cancer. The FGF ligands signal via a family of receptor tyrosine kinases and, depending on the cell type or stage of maturation, produce diverse biological responses that include proliferation, growth arrest, differentiation or apoptosis. A central issue in FGF biology is to understand how these diverse cellular responses are determined and how similar signaling inputs can generate distinct patterns of gene expression that govern the specificity of the cellular response. In this review we draw upon studies from the past fifteen years and attempt to construct a molecular picture of the different levels of regulation by which such specific cellular responses could be achieved by FGF signals. We discuss whether specificity could lie in the nature of the ligand, the particular receptor, the signal transduction pathways utilized, or the transcriptional regulation of specific genes. Finally, we also discuss how the interplay of FGF signals with other signaling systems could contribute to the cellular response. In particular we focus on the interaction with the Wnt pathway since FGF/Wnt cross-talk is emerging as an important nexus in regulating a variety of biological processes.
Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Transducción de Señal/fisiología , Animales , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Activación Transcripcional/fisiología , Proteínas WntRESUMEN
The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSCs). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor-initiating cells that show all the properties of CSC. Knockdown of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore, Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell "addiction" to Sox2-initiated pathways. The requirement of Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proliferación Celular/genética , Osteosarcoma/genética , Osteosarcoma/patología , Factores de Transcripción SOXB1/genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Ratones , Ratones Noqueados , Células Madre Neoplásicas/patología , Transducción de Señal/genéticaRESUMEN
HS (heparan sulphate) proteoglycans bind secreted signalling proteins, including FGFs (fibroblast growth factors) through their HS side chains. Such chains contain a wealth of differentially sulphated saccharide epitopes. Whereas specific HS structures are commonly believed to modulate FGF-binding and activity, selective binding of defined HS epitopes to FGFs has generally not been demonstrated. In the present paper, we have identified a series of sulphated HS octasaccharide epitopes, derived from authentic HS or from biosynthetic libraries that bind with graded affinities to FGF4, FGF7 and FGF8b. These HS species, along with previously identified oligosaccharides that interact with FGF1 and FGF2, constitute the first comprehensive survey of FGF-binding HS epitopes based on carbohydrate sequence analysis. Unexpectedly, our results demonstrate that selective modulation of FGF activity cannot be explained in terms of binding of individual FGFs to specific HS target epitopes. Instead, different FGFs bind to identical HS epitopes with similar relative affinities and low selectivity, such that the strength of these interactions increases with increasing saccharide charge density. We conclude that FGFs show extensive sharing of binding sites in HS. This conclusion challenges the current notion of specificity in HS-FGF interactions, and instead suggests that a set of common HS motifs mediates cellular targeting of different FGFs.
Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Sitios de Unión , Epítopos , Factor 1 de Crecimiento de Fibroblastos/química , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 4 de Crecimiento de Fibroblastos/química , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/química , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/química , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/genética , Unión ProteicaRESUMEN
Fibroblast growth factor (FGF) 2 (or basic FGF) is expressed at increased levels in human prostate cancer. FGF2 can promote cell motility and proliferation, increase tumor angiogenesis, and inhibit apoptosis, all of which play an important role in tumor progression. To determine whether FGF2 plays a critical role in prostate cancer progression, we have used the transgenic adenocarcinoma of the mouse prostate (TRAMP) model system. A high percentage of TRAMP mice develop metastatic prostate cancer, and thus the TRAMP model is useful for evaluating cancer progression. TRAMP mice were crossed with FGF2 knockout (FGF2(-/-)) mice, and tumor progression in TRAMP mice that were either hemi- or homozygous for inactivation of the FGF2 allele was compared with progression in wild-type TRAMP mice. Inactivation of even one FGF2 allele resulted in increased survival, a decrease in metastasis, and inhibition of progression to the poorly differentiated phenotype in primary prostatic tumors. When compared with wild-type mice, poorly differentiated tumors arising in FGF(+/-) and FGF(-/-) mice expressed higher levels of vascular endothelial growth factor and, in some cases, increased levels of acidic FGF intracellular binding protein, a nuclear FGF1-binding protein. These findings suggest that both FGF2-mediated angiogenesis and intranuclear FGF2 activities may promote tumor progression and support the hypothesis that FGF2 plays a significant role in prostate cancer progression in vivo.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/fisiología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Alelos , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Factor 1 de Crecimiento de Fibroblastos/biosíntesis , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Factor 2 de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Osteosarcoma/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Fosfoproteínas/metabolismo , Adipocitos/citología , Adipogénesis , Animales , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Perros , Vía de Señalización Hippo , Humanos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Osteosarcoma/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Rosiglitazona , Transducción de Señal , Tiazolidinedionas/química , Factores de Transcripción , Proteínas Wnt/metabolismo , Proteínas Señalizadoras YAPRESUMEN
Basic fibroblast growth factor (Fgf2) is required for the generation of founder cells within the dorsal pseudostratified ventricular epithelium, which will generate the cerebral cortex, but the ganglionic eminences are not affected. We report here that the Fgf2 null mutant mice show an approximately 40% decrease in cortical glutamatergic pyramidal neurons. In contrast, no change in pyramidal or granule cell number is detected in the hippocampus of Fgf2 -/- mice. In addition, the soma of the pyramidal cells in the frontal and parietal cortices are smaller in Fgf2 knock-out mice. The decrease in the number and size of glutamatergic neuronal population affects all cortical layers but is restricted to the frontal and parietal cortices without any change in the occipital cortex, indicating that Fgf2 is necessary to regulate cell number and size in the anterior cerebral cortex. In contrast to pyramidal neurons, cortical GABA interneurons are unaffected by the lack of Fgf2. The resulting imbalance between the excitatory and inhibitory neurotransmission in the cerebral cortex is reflected by an increased duration of sleep when the animals receive a GABA receptor agonist. Thus, Fgf2 signaling may contribute to the regional specification of the cerebral cortex and may play a role in increasing the size of anterior cortical regions during vertebrate evolution.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Ácido Glutámico/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Recuento de Células , Tamaño de la Célula/efectos de los fármacos , Tamaño de la Célula/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Factor 2 de Crecimiento de Fibroblastos/deficiencia , Factor 2 de Crecimiento de Fibroblastos/farmacología , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Neocórtex/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Pentobarbital/farmacología , Células Piramidales/citología , Células Piramidales/metabolismo , Reflejo/efectos de los fármacos , Reflejo/fisiología , Células Madre/citología , Células Madre/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
The formation of blood capillaries from preexisting vessels (angiogenesis) and vascular remodeling secondary to atherosclerosis or vessel injury are characterized by endothelial cell migration and proliferation. Numerous growth factors control these cell functions. Basic fibroblast growth factor (FGF-2), a potent angiogenesis inducer, stimulates endothelial cell proliferation, migration, and proteinase production in vitro and in vivo. However, mice genetically deficient in FGF-2 have no apparent vascular defects. We have observed that endothelial cell migration in response to mechanical damage in vitro is accompanied by activation of the extracellular signal-regulated kinase (ERK) pathway, which can be blocked by neutralizing anti-FGF-2 antibodies. Endothelial cells from mice that are genetically deficient in FGF-2 neither migrate nor activate ERK in response to mechanical wounding. Addition of exogenous FGF-2 restores a normal cell response, which shows that impaired migration results from the genetic deficiency of this growth factor. Injury-induced ERK activation in endothelial cells occurs only at the edge of the wound. In addition, FGF-2-induced ERK activation mediates endothelial cell migration in response to wounding without a significant effect on proliferation. These data show that FGF-2 is a key regulator of endothelial cell migration during wound repair.
Asunto(s)
Movimiento Celular , Endotelio/fisiología , Factor 2 de Crecimiento de Fibroblastos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , División Celular , Células Cultivadas , Endotelio/citología , Endotelio/enzimología , Activación Enzimática , Factor 2 de Crecimiento de Fibroblastos/farmacología , Eliminación de Gen , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Modelos Biológicos , Estrés MecánicoRESUMEN
The repressive Hippo pathway has a profound tumour suppressive role in cancer by restraining the growth-promoting function of the transcriptional coactivator, YAP. We previously showed that the stem cell transcription factor Sox2 maintains cancer stem cells (CSCs) in osteosarcomas. We now report that in these tumours, Sox2 antagonizes the Hippo pathway by direct repression of two Hippo activators, Nf2 (Merlin) and WWC1 (Kibra), leading to exaggerated YAP function. Repression of Nf2, WWC1 and high YAP expression marks the CSC fraction of the tumor population, while the more differentiated fraction has high Nf2, high WWC1 and reduced YAP expression. YAP depletion sharply reduces CSCs and tumorigenicity of osteosarcomas. Thus, Sox2 interferes with the tumour-suppressive Hippo pathway to maintain CSCs in osteosarcomas. This Sox2-Hippo axis is conserved in other Sox2-dependent cancers such as glioblastomas. Disruption of YAP transcriptional activity could be a therapeutic strategy for Sox2-dependent tumours.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Osteosarcoma/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Osteosarcoma/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAPRESUMEN
Continuous fibroblast growth factor signaling inhibits the differentiation of primary osteoblasts and osteoblastic cell lines. We studied the expression of several cell cycle regulatory molecules in response to fibroblast growth factor, and found that fibroblast growth factor strongly upregulates the expression of p21(WAF1/CIP1), a CDK inhibitor that has also been implicated in the regulation of apoptosis and cell differentiation. To test the hypothesis that p21 mediated the fibroblast growth factor effects on osteoblasts, we studied the differentiation of primary osteoblasts and osteoblastic cell lines derived from p21 null mice in the presence or absence of fibroblast growth factor. While the results obtained indicate that p21 is not the major mediator of the inhibition of osteoblast differentiation by fibroblast growth factor, we found that p21 per se acts as a brake on osteoblast proliferation and differentiation. p21 is strongly downregulated during differentiation and is highly expressed in osteoblastic cell lines expressing activated FGFR2, which do not differentiate. p21 null osteoblasts differentiate faster than wild-type cells, are more susceptible to the differentiation-promoting action of BMP-2, and undergo increased differentiation-related apoptosis. Furthermore, transient overexpression of p21 from an adenovirus vector delayed the onset of differentiation both in wild-type and in p21 null osteoblasts. These results highlight a new function for p21 in osteoblast differentiation.