Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
medRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370747

RESUMEN

The computational analysis to assist radiologists in the interpretation of mammograms usually requires a pre-processing step where the image is converted into a black and white mask to separate breast tissue from the pectoral muscle and the image background. The manual delineation of the breast tissue from the mammogram image is subjective and time-consuming. The 2D Wavelet Transform Modulus Maxima (WTMM) segmentation method, a powerful and versatile multi-scale edge detection approach, is adapted and presented as a novel automated breast tissue segmentation method. The algorithm computes the local maxima of the modulus of the continuous Gaussian wavelet transform to produce candidate edge detection lines called maxima chains. These maxima chains from multiple wavelet scales are optimally sorted to produce a breast tissue segmentation mask. The mammographic mask is quantitatively compared to a manual delineation using the Dice-Sorenson Coefficient (DSC). The adaptation of the 2D WTMM segmentation method produces a median DSC of 0.9763 on 1042 mediolateral oblique (MLO) 2D Full Field Digital mammographic views from 82 patients obtained from the MaineHealth Biobank (Scarborough, Maine, USA). Our proposed approach is evaluated against OpenBreast , an open-source automated analysis software in MATLAB, through comparing each approach's masks to the manual delineations. OpenBreast produces a lower median DSC of 0.9710. To determine statistical significance, the analysis is restricted to 82 mammograms (one randomly chosen per patient), which yields DSC medians of 0.9756 for the WTMM approach vs. 0.9698 for OpenBreast ( p -value = 0.0067 using a paired Wilcoxon Rank Sum test). Thus, the 2D WTMM segmentation method can reliably delineate the pectoral muscle and produce an accurate segmentation of whole breast tissue in mammograms.

2.
medRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405762

RESUMEN

Mammography is used as secondary prevention for breast cancer. Computer-aided detection and image-based short-term risk estimation were developed to improve the accuracy of mammography. However, most approaches inherently lack the ability to connect observations at the mammography level to observations of cancer onset and progression seen at a smaller scale, which can occur years before imageable cancer and lead to primary prevention. The Hurst exponent (H) can quantify mammographic tissue into regions of dense tissue undergoing active restructuring and regions that remain passive, with amounts of active and passive dense tissue that differ between cancer and controls at diagnosis. A longitudinal retrospective case-control study was conducted to test the hypothesis that differences can be detected before diagnosis and changes could signal developing cancer. Mammograms and reports were collected from 50 patients from Maine Medical Center in 2015 with at least a 5-year screening history. Age-matching patients within 2 years created a primary dataset, and within 5 years, a secondary dataset was created to test for sensitivity. The amount of passive (H≥0.55) and active dense tissue (0.45

3.
Microbiol Resour Announc ; 10(5)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541879

RESUMEN

We report the draft genome sequences of 27 common pathogens collected from a northern Maine hospital in 2017. These were sequenced in order to determine temporal and biogeographical patterns of antibiotic gene distribution. A total of 908 antibiotic resistance genes, 848 insertion sequence elements, and 57 plasmids were identified.

4.
Microbiol Resour Announc ; 10(48): e0074921, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854701

RESUMEN

Draft genome sequences of Escherichia coli and Pseudomonas aeruginosa strains collected from clinical infections were used to determine the prevalence of newly emerging antibiotic resistance genes in Maine. Comparisons between cefepime-resistant and -susceptible E. coli strains and imipenem-resistant and -susceptible P. aeruginosa strains are being conducted.

5.
Front Physiol ; 12: 660883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054577

RESUMEN

The 2D wavelet transform modulus maxima (WTMM) method is used to perform a comparison of the spatial fluctuations of mammographic breast tissue from patients with invasive lobular carcinoma, those with invasive ductal carcinoma, and those with benign lesions. We follow a procedure developed and validated in a previous study, in which a sliding window protocol is used to analyze thousands of small subregions in a given mammogram. These subregions are categorized according to their Hurst exponent values (H): fatty tissue (H ≤ 0.45), dense tissue (H ≥ 0.55), and disrupted tissue potentially linked with tumor-associated loss of homeostasis (0.45 < H < 0.55). Following this categorization scheme, we compare the mammographic tissue composition of the breasts. First, we show that cancerous breasts are significantly different than breasts with a benign lesion (p-value ∼ 0.002). Second, the asymmetry between a patient's cancerous breast and its contralateral counterpart, when compared to the asymmetry from patients with benign lesions, is also statistically significant (p-value ∼ 0.006). And finally, we show that lobular and ductal cancerous breasts show similar levels of disruption and similar levels of asymmetry. This study demonstrates reproducibility of the WTMM sliding-window approach to help detect and characterize tumor-associated breast tissue disruption from standard mammography. It also shows promise to help with the detection lobular lesions that typically go undetected via standard screening mammography at a much higher rate than ductal lesions. Here both types are assessed similarly.

6.
Med Phys ; 44(4): 1324-1336, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28112408

RESUMEN

PURPOSE: The microenvironment of breast tumors plays a critical role in tumorigenesis. As long as the structural integrity of the microenvironment is upheld, the tumor is suppressed. If tissue structure is lost through disruptions in the normal cell cycle, the microenvironment may act as a tumor promoter. Therefore, the properties that distinguish between healthy and tumorous tissues may not be solely in the tumor characteristics but rather in surrounding non-tumor tissue. The goal of this paper was to show preliminary evidence that tissue disruption and loss of homeostasis in breast tissue microenvironment and breast bilateral asymmetry can be quantitatively and objectively assessed from mammography via a localized, wavelet-based analysis of the whole breast. METHODS: A wavelet-based multifractal formalism called the 2D Wavelet Transform Modulus Maxima (WTMM) method was used to quantitate density fluctuations from mammographic breast tissue via the Hurst exponent (H). Each entire mammogram was cut in hundreds of 360 × 360 pixel subregions in a gridding scheme of overlapping sliding windows, with each window boundary separated by 32 pixels. The 2D WTMM method was applied to each subregion individually. A data mining approach was set up to determine which metrics best discriminated between normal vs. cancer cases. These same metrics were then used, without modification, to discriminate between normal vs. benign and benign vs. cancer cases. RESULTS: The density fluctuations in healthy mammographic breast tissue are either monofractal anti-correlated (H < 1/2) for fatty tissue or monofractal long-range correlated (H>1/2) for dense tissue. However, tissue regions with H~1/2, as well as left vs. right breast asymetries, were found preferably in tumorous (benign or cancer) breasts vs. normal breasts, as quantified via a combination metric yielding a P-value ~ 0.0006. No metric considered showed significant differences between cancer vs. benign breasts. CONCLUSIONS: Since mammographic tissue regions associated with uncorrelated (H~1/2) density fluctuations were predominantly in tumorous breasts, and since the underlying physical processes associated with a H~1/2 signature are those of randomness, lack of spatial correlation, and free diffusion, it is hypothesized that this signature is also associated with tissue disruption and loss of tissue homeostasis.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mamografía , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Mama/diagnóstico por imagen , Mama/patología , Homeostasis , Humanos , Procesamiento de Imagen Asistido por Computador , Persona de Mediana Edad , Análisis de Ondículas
7.
Comput Biol Med ; 76: 7-13, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27380025

RESUMEN

BACKGROUND: When screening for breast cancer, the radiological interpretation of mammograms is a difficult task, particularly when classifying precancerous growth such as microcalcifications (MCs). Biophysical modeling of benign vs. malignant growth of MCs in simulated mammographic backgrounds may improve characterization of these structures METHODS: A mathematical model based on crystal growth rules for calcium oxide (benign) and hydroxyapatite (malignant) was used in conjunction with simulated mammographic backgrounds, which were generated by fractional Brownian motion of varying roughness and quantified by the Hurst exponent to mimic tissue of varying density. Simulated MC clusters were compared by fractal dimension, average circularity of individual MCs, average number of MCs per cluster, and average cluster area. RESULTS: Benign and malignant clusters were distinguishable by average circularity, average number of MCs per cluster, and average cluster area with p<0.01 across all Hurst exponent values considered. Clusters were distinguishable by fractal dimension with p<0.05 in low Hurst exponent environments. As the Hurst exponent increased (tissue density increased) benign and malignant MCs became indistinguishable by fractal dimension. CONCLUSIONS: The fractal dimension of MCs changes with breast tissue density, which suggests tissue environment plays a role in regulating MC growth. Benign and malignant MCs are distinguishable in all types of tissue by shape, size, and area, which is consistent with findings in the literature. These results may help to better understand the effects of the tissue environment on tumor progression, and improve classification of MCs in mammograms via computer-aided diagnosis.


Asunto(s)
Enfermedades de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Mamografía/métodos , Compuestos de Calcio/química , Durapatita/química , Femenino , Fractales , Humanos , Modelos Biológicos , Óxidos/química
8.
PLoS One ; 9(9): e107580, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222610

RESUMEN

The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the "CC-MLO fractal dimension plot", where a "fractal zone" and "Euclidean zones" (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Teorema de Bayes , Neoplasias de la Mama/patología , Calcinosis/patología , Femenino , Fractales , Humanos , Mamografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA