Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 137(8): 1285-95, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20223757

RESUMEN

Tie1 is an endothelial receptor tyrosine kinase that is essential for development and maintenance of the vascular system; however, the role of Tie1 in development of the lymphatic vasculature is unknown. To address this question, we first documented that Tie1 is expressed at the earliest stages of lymphangiogenesis in Prox1-positive venous lymphatic endothelial cell (LEC) progenitors. LEC Tie1 expression is maintained throughout embryonic development and persists in postnatal mice. We then generated two lines of Tie1 mutant mice: a hypomorphic allele, which has reduced expression of Tie1, and a conditional allele. Reduction of Tie1 levels resulted in abnormal lymphatic patterning and in dilated and disorganized lymphatic vessels in all tissues examined and in impaired lymphatic drainage in embryonic skin. Homozygous hypomorphic mice also exhibited abnormally dilated jugular lymphatic vessels due to increased production of Prox1-positive LECs during initial lymphangiogenesis, indicating that Tie1 is required for the early stages of normal lymphangiogenesis. During later stages of lymphatic development, we observed an increase in LEC apoptosis in the hypomorphic embryos after mid-gestation that was associated with abnormal regression of the lymphatic vasculature. Therefore, Tie1 is required for early LEC proliferation and subsequent survival of developing LECs. The severity of the phenotypes observed correlated with the expression levels of Tie1, confirming a dosage dependence for Tie1 in LEC integrity and survival. No defects were observed in the arterial or venous vasculature. These results suggest that the developing lymphatic vasculature is particularly sensitive to alterations in Tie1 expression.


Asunto(s)
Desarrollo Embrionario/genética , Linfangiogénesis/genética , Sistema Linfático/embriología , Receptores TIE/fisiología , Animales , Apoptosis , Vasos Sanguíneos/embriología , Vasos Sanguíneos/fisiología , Cartilla de ADN , Sondas de ADN , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Linfangiogénesis/fisiología , Sistema Linfático/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Fenotipo , Reacción en Cadena de la Polimerasa , Proteínas Tirosina Quinasas Receptoras/deficiencia , Proteínas Tirosina Quinasas Receptoras/genética , Receptores TIE/deficiencia , Receptores TIE/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Dev Biol ; 317(2): 486-96, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18407257

RESUMEN

NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.


Asunto(s)
Proteínas Musculares/metabolismo , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Clonación Molecular , Corazón/embriología , Hibridación in Situ , Proteínas Musculares/genética , Mutación/genética , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Oligonucleótidos/genética , Proteínas de Dominio T Box/metabolismo , Versicanos/metabolismo , Proteínas de Pez Cebra/genética
3.
Circ Res ; 99(2): 201-8, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16794186

RESUMEN

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, neutropenia, organic aciduria, and growth retardation caused by mutations in tafazzin. The sequence similarity of tafazzin to acyltransferases suggests a role in mitochondrial phospholipid metabolism. To study the role of tafazzin in heart function and development, we created a knockdown zebrafish model. Zebrafish tafazzin mRNA is first evident at 7 hours post-fertilization (hpf). At 10 and 24 hpf, tafazzin mRNA is ubiquitous, with highest levels in the head. By 51 hpf, expression becomes cardiac restricted. The tafazzin knockdown created by antisense morpholino yolk injection resulted in dose-dependent lethality, severe developmental and growth retardation, marked bradycardia and pericardial effusions, and generalized edema, signs that resemble human Barth syndrome heart failure. This knockdown phenotype was rescued by concomitant injection of normal tafazzin mRNA. Abnormal cardiac development, with a linear, nonlooped heart, and hypomorphic tail and eye development proves that tafazzin is essential for overall zebrafish development, especially of the heart. The tafazzin knockdown zebrafish provides an animal model similar to Barth syndrome to analyze the severity of human mutants and to test potential treatments.


Asunto(s)
Cardiomiopatía Dilatada/congénito , Cardiomiopatía Dilatada/etiología , Corazón/crecimiento & desarrollo , Factores de Transcripción/deficiencia , Proteínas de Pez Cebra/deficiencia , Aciltransferasas , Animales , Cardiomiopatía Dilatada/genética , Desarrollo Infantil , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiología , Humanos , Lactante , ARN sin Sentido/farmacología , ARN Mensajero/antagonistas & inhibidores , Síndrome , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
4.
Development ; 133(22): 4585-93, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17050629

RESUMEN

The transforming growth factorbeta (Tgfbeta) signaling pathway plays crucial roles in many biological processes. To understand the role(s) of Tgfbeta signaling during cardiogenesis in vivo and to overcome the early lethality of Tgfbr2(-/-) embryos, we applied a Cre/loxp system to specifically inactivate Tgfbr2 in either the myocardium or the endothelium of mouse embryos. Our results show that Tgfbr2 in the myocardium is dispensable for cardiogenesis in most embryos. Contrary to the prediction from results of previous in vitro collagen gel assays, inactivation of Tgfbr2 in the endocardium does not prevent atrioventricular cushion mesenchyme formation, arguing against its essential role in epithelium-mesenchyme transformation in vivo. We further demonstrate that Tgfbeta signaling is required for the proper remodeling of the atrioventricular canal and for cardiac looping, and that perturbation in Tgfbeta signaling causes the double-inlet left ventricle (DILV) defect. Thus, our study provides a unique mouse genetic model for DILV, further characterization of which suggests a potential cellular mechanism for the defect.


Asunto(s)
Diferenciación Celular/fisiología , Defectos de la Almohadilla Endocárdica/embriología , Corazón/embriología , Mesodermo/fisiología , Modelos Animales , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Defectos de la Almohadilla Endocárdica/metabolismo , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Microdisección
5.
Dev Dyn ; 235(6): 1563-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16538672

RESUMEN

Intestinal growth, morphogenesis, differentiation, and homeostasis are regulated by reciprocal interactions between the epithelium and the underlying mesenchymal stroma. The identification of BMPR1A mutations in patients with Juvenile Polyposis implicates Bmp signaling as an important mediator of these interactions. To test this hypothesis, we inhibited Bmp signaling in the mouse proximal intestine by transgenic misexpression of the BMP antagonist, noggin, using regulatory elements of the fatty acid binding protein (Fabp1) gene. This leads to abnormal villus morphogenesis, stromal and epithelial hyperplasia, and ectopic crypt formation. The resulting intestinal histopathology resembles that seen in human Juvenile Polyposis. Misexpression of noggin in the large intestine gives a similar abnormal phenotype in this region of the gut. Analysis of gene expression in the transgenic small intestine raises the possibility that Hedgehog and Pdgf signaling play a role in the development of the Juvenile Polyposis-like phenotype.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteínas Portadoras/genética , Proteínas de Unión a Ácidos Grasos/genética , Intestinos/embriología , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Intestinos/anomalías , Ratones , Ratones Transgénicos
6.
Dev Biol ; 258(1): 169-84, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12781691

RESUMEN

The mechanisms that control proliferation and differentiation of embryonic lung mesenchyme are largely unknown. We describe an explant system in which exogenous recombinant N-Sonic Hedgehog (N-Shh) protein sustains the survival and proliferation of lung mesenchyme in a dose-dependent manner. In addition, Shh upregulates several mesenchymal cell markers, including its target gene Patched (Ptc), intercellular signaling genes Bone Morphogenetic Protein-4 (Bmp4) and Noggin (Nog), and smooth muscle actin and myosin. In explants exposed to N-Shh in the medium, these products are upregulated throughout the mesenchyme, but not in the periphery. This exclusion zone correlates with the presence of an overlying mesothelial layer, which, as in vivo, expresses Fibroblast Growth Factor 9 (Fgf9). Recombinant Fgf9 protein inhibits the differentiation response of the mesenchyme to N-Shh, but does not affect proliferation. We propose a model for how factors made by two epithelial cell populations, the inner endoderm and the outer jacket of mesothelium, coordinately regulate the proliferation and differentiation of the lung mesoderm.


Asunto(s)
Tipificación del Cuerpo , Pulmón/embriología , Actinas/genética , Actinas/fisiología , Animales , Biomarcadores , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/fisiología , Proteínas Portadoras , Diferenciación Celular , División Celular , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Factor 9 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog , Péptidos y Proteínas de Señalización Intracelular , Pulmón/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mesodermo/efectos de los fármacos , Mesodermo/fisiología , Mesodermo/ultraestructura , Ratones , Modelos Biológicos , Miosinas/genética , Miosinas/fisiología , Técnicas de Cultivo de Órganos , Receptores Patched , Receptor Patched-1 , Proteínas/genética , Proteínas/fisiología , Receptores de Superficie Celular , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transactivadores/farmacología , Transactivadores/fisiología
7.
Genes Dev ; 17(19): 2362-7, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12975322

RESUMEN

Proper septation and valvulogenesis during cardiogenesis depend on interactions between the myocardium and the endocardium. By combining use of a hypomorphic Bone morphogenetic protein 4 (Bmp4) allele with conditional gene inactivation, we here identify Bmp4 as a signal from the myocardium directly mediating atrioventricular septation. Defects in this process cause one of the most common human congenital heart abnormalities, atrioventricular canal defect (AVCD). The spectrum of defects obtained through altering Bmp4 expression in the myocardium recapitulates the range of AVCDs diagnosed in patients, thus providing a useful genetic model with AVCD as the primary defect.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Corazón/embriología , Animales , Animales Recién Nacidos , Proteína Morfogenética Ósea 4 , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Ratones , Ratones Mutantes , Ratones Transgénicos , Miocitos Cardíacos/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA