Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279277

RESUMEN

Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Inhibidores de Histona Desacetilasas , Receptor EphA2 , Animales , Femenino , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Inhibidores de Histona Desacetilasas/uso terapéutico , Panobinostat/farmacología , Panobinostat/uso terapéutico , Fosfatidilinositol 3-Quinasas , Terapia Molecular Dirigida , Receptor EphA2/antagonistas & inhibidores
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835335

RESUMEN

EphA2 tyrosine kinase is upregulated in many cancers and correlated with poor survival of patients, including those with endometrial cancer. EphA2-targeted drugs have shown modest clinical benefit. To improve the therapeutic response to such drugs, we performed a high-throughput chemical screen to discover novel synergistic partners for EphA2-targeted therapeutics. Our screen identified the Wee1 kinase inhibitor, MK1775, as a synergistic partner to EphA2, and this finding was confirmed using both in vitro and in vivo experiments. We hypothesized that Wee1 inhibition would sensitize cells to EphA2-targeted therapy. Combination treatment decreased cell viability, induced apoptosis, and reduced clonogenic potential in endometrial cancer cell lines. In vivo Hec1A and Ishikawa-Luc orthotopic mouse models of endometrial cancer showed greater anti-tumor responses to combination treatment than to either monotherapy. RNASeq analysis highlighted reduced cell proliferation and defective DNA damage response pathways as potential mediators of the combination's effects. In conclusion, our preclinical findings indicate that Wee1 inhibition can enhance the response to EphA2-targeted therapeutics in endometrial cancer; this strategy thus warrants further development.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Receptor EphA2 , Animales , Femenino , Humanos , Ratones , Antineoplásicos/uso terapéutico , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Endometriales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptor EphA2/antagonistas & inhibidores
3.
Geriatr Nurs ; 50: 208-214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36804028

RESUMEN

This study aims to examine how laughter yoga affects the loneliness, psychological resilience, and quality of life of older adults living in a nursing home. The sample of this intervention study, made using a control group with a pretest/posttest design, consists of 65 older adults living in Turkey. The data were collected in September 2022 using the Personal Information Form, the Loneliness Scale for the Elderly, the Brief Psychological Resilience Scale, and the Quality of Life Scale for the Elderly. The intervention group (n=32) took part in laughter yoga twice a week for four weeks. No intervention was made with the control group (n=33). A statistically significant difference was found between the groups' mean post-test scores for loneliness, psychological resilience, and quality of life (p < 0.05) after the laughter yoga sessions. The eight-session laughter yoga program was found to reduce loneliness and increase resilience and quality of life in older adults.


Asunto(s)
Risoterapia , Resiliencia Psicológica , Humanos , Anciano , Soledad , Calidad de Vida/psicología , Proyectos Piloto
4.
Environ Monit Assess ; 195(9): 1085, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615782

RESUMEN

The urbanization processes with growing vehicle numbers cause heavy metal pollution in street dust, and high populations in metropolitan cities are exposed to pollutants. This paper aims to monitor the spatial distribution of heavy metals and evaluate the concentrations via health risk assessment of HMs (Cu, Ni, Cd, Co, Pb, and Zn) that expose the inhabitants to health hazards. According to the results of the current study, sixty street dust samples were applied to the acid digestion technique and quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The spatial distribution of the selected heavy metals in the street dust was investigated using the spatial analysis tool in ArcGIS 10.0 according to population density and land use. In the present study, we used hazard index and cancer risk methods to estimate the public health risk of the pollutants exposed to street dust in Ankara. The concentrations range of the elements in street dust over the study area ranged from 3.34-4.50, 31.69-42.87, 16.09-21.54, 42.85-57.55, 0.00-3.51, and 23.03-30.79, respectively. The overall decreasing order of mean concentration of metals was observed as follows: Pb > Cu > Ni > Co > Cd > Zn. Vehicle traffic and industrial activities seem to be the most critical anthropogenic sources responsible for dust pollution in the study area. The risk assessment of Pb and Ni exposure was the highest, and the hazard index values were 2.42E + 00 and 2.28E + 00 mg/kg/day for children. However, the effect on adults was 2.62E-01 and 2.37E-02 mg/kg/day, followed by inhalation and dermal contact with street dust was almost negligible. The decreasing concentration is modeled spatially along the western development corridor of the city. The risk to public health is high in areas with high densities close to the city center and the main artery.


Asunto(s)
Cadmio , Contaminantes Ambientales , Adulto , Niño , Humanos , Plomo , Monitoreo del Ambiente , Intoxicación por Metales Pesados , Medición de Riesgo , Polvo
5.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668685

RESUMEN

Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2-specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.


Asunto(s)
Carcinogénesis/metabolismo , Resistencia a Antineoplásicos , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Serina-Treonina Quinasas TOR/genética
6.
Gut ; 69(10): 1818-1831, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31988194

RESUMEN

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Asunto(s)
Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales , Neovascularización Patológica , ARN Largo no Codificante , Factor de Transcripción STAT3/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Terapia Genética , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pruebas de Farmacogenómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Mol Sci ; 18(3)2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257101

RESUMEN

Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.


Asunto(s)
Exosomas/fisiología , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Transporte Biológico , Comunicación Celular , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
8.
Prep Biochem Biotechnol ; 47(1): 67-73, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27092587

RESUMEN

(S)-1-Phenylethanol derivatives, which are the precursors of many pharmacological products, have also been used as anti-Alzheimer drugs. Bioreduction experiments were performed in a batch and packed-bed bioreactor. Then, the kinetics constants were determined by examining the reaction kinetics in the batch system with free and immobilized carrot cells. Also, the effective diffusion coefficient (De) of acetophenone in calcium alginate-immobilized carrot cells was investigated. Kinetics constants for free cells, which are intrinsic values, are reaction rate Vmax = 0.052 mmol L-1 min-1, and constants of the Michaelis-Menten KM = 2.31 mmol L-1. Kinetics constants for immobilized cells, which are considered apparent values, are Vmax, app = 0.0407 mmol L-1 min-1, KM, app = 3.0472 mmol L-1 for 2 mm bead diameter, and Vmax, app = 0.0453 mmol L-1 min-1, KM, app = 4.9383 mmol L-1 for 3 mm bead diameter. Average value of effective diffusion coefficient of acetophenone in immobilized beads was determined as 1.97 × 10-6 cm2 s-1. Using immobilized carrot cells in an up-flow packed-bed reactor, continuous production of (S)-1-phenylethanol through asymmetric bioreduction of acetophenone was performed. The effects of the residence time and concentrations of substrate were investigated at pH 7.6 and 33°C. Enantiomerically pure (S)-1-phenylethanol (ee > 99%) was produced with 75% conversion at 4-hr residence time.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Reactores Biológicos , Daucus carota/citología , Acetofenonas/química , Alginatos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Cinética
9.
NPJ Precis Oncol ; 8(1): 86, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582949

RESUMEN

Small RNAs (microRNAs [miRNAs] or small interfering RNAs [siRNAs]) are effective tools for cancer therapy, but many of the existing carriers for their delivery are limited by low bioavailability, insufficient loading, impaired transport across biological barriers, and low delivery into the tumor microenvironment. Extracellular vesicle (EV)-based communication in mammalian and plant systems is important for many physiological and pathological processes, and EVs show promise as carriers for RNA interference molecules. However, some fundamental issues limit their use, such as insufficient cargo loading and low potential for scaling production. Plant-derived vesicles (PDVs) are membrane-coated vesicles released in the apoplastic fluid of plants that contain biomolecules that play a role in several biological mechanisms. Here, we developed an alternative approach to deliver miRNA for cancer therapy using PDVs. We isolated vesicles from watermelon and formulated a hybrid, exosomal, polymeric system in which PDVs were combined with a dendrimer bound to miRNA146 mimic. Third generation PAMAM was chosen due to its high branching structure and versatility for loading molecules of interest. We performed several in vivo experiments to demonstrate the therapeutic efficacy of our compound and explored in vitro biological mechanisms underlying the anti-tumor effects of miRNA146, which are mostly related to its anti-angiogenic activity.

10.
Noncoding RNA ; 9(2)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37104009

RESUMEN

Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.

11.
iScience ; 26(2): 106020, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824283

RESUMEN

Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.

12.
J Control Release ; 357: 472-483, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031740

RESUMEN

Plant-derived vesicles (PDVs) are attractive for therapeutic applications, including as potential nanocarriers. However, a concern with oral delivery of PDVs is whether they would remain intact in the gastrointestinal tract. We found that 82% of cabbage PDVs were destroyed under conditions mimicking the upper digestive tract. To overcome this limitation, we developed a delivery method whereby lyophilized Eudragit S100-coated cabbage PDVs were packaged into a capsule (Cap-cPDVs). Lyophilization and suspension of PDVs did not have an appreciable impact on PDV structure, number, or therapeutic effect. Additionally, packaging the lyophilized Eudragit S100-coated PDVs into capsules allowed them to pass through the upper gastrointestinal tract for delivery into the colon better than did suspension of PDVs in phosphate-buffered saline. Cap-cPDVs showed robust therapeutic effect in a dextran sulfate sodium-induced colitis mouse model. These findings could have broad implications for the use of PDVs as orally delivered nanocarriers of natural therapeutic plant compounds or other therapeutics.


Asunto(s)
Colitis , Ratones , Animales , Concentración de Iones de Hidrógeno , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Ácidos Polimetacrílicos/química , Administración Oral , Sistemas de Liberación de Medicamentos
13.
NPJ Precis Oncol ; 7(1): 115, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923835

RESUMEN

In this study, we investigated the metabolic alterations associated with clinical response to chemotherapy in patients with ovarian cancer. Pre- and post-neoadjuvant chemotherapy (NACT) tissues from patients with high-grade serous ovarian cancer (HGSC) who had poor response (PR) or excellent response (ER) to NACT were examined. Desorption electrospray ionization mass spectrometry (DESI-MS) was performed on sections of HGSC tissues collected according to a rigorous laparoscopic triage algorithm. Quantitative MS-based proteomics and phosphoproteomics were performed on a subgroup of pre-NACT samples. Highly abundant metabolites in the pre-NACT PR tumors were related to pyrimidine metabolism in the epithelial regions and oxygen-dependent proline hydroxylation of hypoxia-inducible factor alpha in the stromal regions. Metabolites more abundant in the epithelial regions of post-NACT PR tumors were involved in the metabolism of nucleotides, and metabolites more abundant in the stromal regions of post-NACT PR tumors were related to aspartate and asparagine metabolism, phenylalanine and tyrosine metabolism, nucleotide biosynthesis, and the urea cycle. A predictive model built on ions with differential abundances allowed the classification of patients' tumor responses as ER or PR with 75% accuracy (10-fold cross-validation ridge regression model). These findings offer new insights related to differential responses to chemotherapy and could lead to novel actionable targets.

14.
Nat Commun ; 14(1): 2407, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100807

RESUMEN

Antiangiogenic treatment targeting the vascular endothelial growth factor (VEGF) pathway is a powerful tool to combat tumor growth and progression; however, drug resistance frequently emerges. We identify CD5L (CD5 antigen-like precursor) as an important gene upregulated in response to antiangiogenic therapy leading to the emergence of adaptive resistance. By using both an RNA-aptamer and a monoclonal antibody targeting CD5L, we are able to abate the pro-angiogenic effects of CD5L overexpression in both in vitro and in vivo settings. In addition, we find that increased expression of vascular CD5L in cancer patients is associated with bevacizumab resistance and worse overall survival. These findings implicate CD5L as an important factor in adaptive resistance to antiangiogenic therapy and suggest that modalities to target CD5L have potentially important clinical utility.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Anticuerpos Monoclonales/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Proteínas Reguladoras de la Apoptosis , Receptores Depuradores
15.
J Cancer Res Clin Oncol ; 148(4): 803-821, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35094142

RESUMEN

PURPOSE: Tumor-associated macrophages (TAMs) are known to contribute to adaptive resistance to anti-vascular endothelial growth factor (VEGF) antibody (AVA) therapy in ovarian cancer. BET (bromodomain and extra-terminal domain) inhibitors (BETi) may have unique roles in targeting TAMs. Our objective was to examine the effects of BETi on TAMs, especially in the context of enhancing the efficacy of AVA therapy. METHODS: We conducted a series of in vitro (MTT assay, apoptosis, flow cytometry, and RNA sequencing) and in vivo (xenograft ovarian cancer model) experiments to determine the biological effects of BETi combined with AVA in ovarian cancer. For statistical analysis, a two-tailed Student's t test (equal variance) or ANOVA was used for multiple groups' comparison, and p < 0.05 was considered significant. RESULTS: BETi resulted in a dose-dependent decrease in cell viability and induced apoptosis (p < 0.01) in ovarian cancer cells (SKOV3ip1, OVCAR5, and OVCAR8). Treatment with BETi significantly increased apoptosis in THP-1 monocytes and macrophages (PMA-differentiated THP-1; p < 0.01). Furthermore, BETi selectively induced greater apoptosis in M2-like macrophages (PMA and IL-4, IL-13-differentiated THP-1) (31.3%-36.1%) than in M1-like macrophages (PMA and LPS-differentiated THP-1) (12.4%-18.5%) (p < 0.01). Flow cytometry revealed that the percentage of M1-like macrophages (CD68+/CD80+) was significantly increased after treatment with low-dose BETi (ABBV-075 0.1 µM; p < 0.05), whereas the percentage of CD68+/CCR2+ macrophages was significantly decreased (p < 0.001); these findings suggest that BETi may selectively inhibit the survival of CCR2+ macrophages and re-polarize the macrophages into an M1-like phenotype. RNA-seq analysis revealed that BETi selectively targeted macrophage infiltration-related cytokines/chemokines in ovarian cancer (adjusted p < 0.05 and Log2 fold change ≥ 1.5). Finally, using in vivo ovarian cancer models, compared with control or monotherapy, the combination of BETi (ABBV-075) and bevacizumab resulted in greater inhibition of tumor growth and macrophage infiltration (p < 0.05) and longer survival of tumor-bearing mice (p < 0.001). CONCLUSIONS: Our findings indicate a previously unrecognized role for BETi in selectively targeting CCR2+ TAMs and enhancing the efficacy of AVA therapy in ovarian cancer.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Animales , Antineoplásicos/farmacología , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Humanos , Macrófagos , Ratones , Neoplasias Ováricas/patología , Receptores CCR2/metabolismo
16.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077735

RESUMEN

Despite having similar histologic features, patients with high-grade serous ovarian carcinoma (HGSC) often experience highly variable outcomes. The underlying determinants for long-term survival (LTS, ≥10 years) versus short-term survival (STS, <3 years) are largely unknown. The present study sought to identify molecular predictors of LTS for women with HGSC. A cohort of 24 frozen HGSC samples was collected (12 LTS and 12 STS) and analyzed at DNA, RNA, and protein levels. OVCAR5 and OVCAR8 cell lines were used for in vitro validation studies. For in vivo studies, we injected OVCAR8 cells into the peritoneal cavity of female athymic nude mice. From RNAseq analysis, 11 genes were found to be differentially expressed between the STS and LTS groups (fold change > 2; false discovery rate < 0.01). In the subsequent validation cohort, transmembrane protein 62 (TMEM62) was found to be related to LTS. CIBERSORT analysis showed that T cells (follicular helper) were found at higher levels in tumors from LTS than STS groups. In vitro data using OVCAR5 and OVCAR8 cells showed decreased proliferation with TMEM62 overexpression and positive correlation with a longevity-regulating pathway (KEGG HSA04213) at the RNA level. In vivo analysis using the OVCAR8-TMEM62-TetON model showed decreased tumor burden in mice with high- vs. low-expressing TMEM62 tumors. Our results demonstrate that restoring TMEM62 may be a novel approach for treatment of HGSC. These findings may have implications for biomarker and intervention strategies to help improve patient outcomes

17.
Artículo en Inglés | MEDLINE | ID: mdl-20858042

RESUMEN

In this study, the production of enantiopure benzoin from rac-benzoin acetate was achieved by lipase catalyzed kinetic resolution combined with deracemization using Rhizopus oryzae (CBS111718). The growth cells were pretreated with 20 kHz and 30 kHz ultrasound irradiation and mechanical homogenization. Approximately 100% conversion and 96% enantiomeric excess of the product (S-benzoin) were obtained by applying 20 kHz ultrasound irradiation at pH 6. The deracemization process involves new and important processes that allow for the transformation of a racemate into a single stereoisomeric product in 100% theoretical yields. Moreover, the application of ultrasound increases the conversion rate by reducing mass transfer limitation.


Asunto(s)
Benzoína/síntesis química , Lipasa/metabolismo , Proteínas de Plantas/metabolismo , Racemasas y Epimerasas/metabolismo , Rhizopus/efectos de la radiación , Acetatos/química , Catálisis/efectos de la radiación , Hidrólisis/efectos de los fármacos , Hidrólisis/efectos de la radiación , Isomerismo , Cinética , Ondas de Radio , Rhizopus/enzimología , Estereoisomerismo
18.
Methods Mol Biol ; 2372: 157-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34417750

RESUMEN

RNA interference (RNAi) has rapidly become a powerful tool for target discovery and therapeutics. Small interfering RNAs (siRNAs) are highly effective in mediating sequence-specific gene silencing. However, the major obstacle for using siRNAs for cancer therapeutics is their systemic delivery from the administration site to target cells in vivo. This chapter describes approaches to deliver siRNA effectively for cancer treatment and discusses in detail the current methods to assess pharmacokinetics and biodistribution of siRNAs in vivo.


Asunto(s)
ARN Interferente Pequeño/genética , Animales , Silenciador del Gen , Ratones , Neoplasias/genética , Neoplasias/terapia , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Distribución Tisular
19.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065218

RESUMEN

IK is a mitotic factor that promotes cell cycle progression. Our previous investigation of 271 endometrial cancer (EC) samples from the Cancer Genome Atlas (TCGA) dataset showed IK somatic mutations were enriched in a cluster of patients with high-grade and high-stage cancers, and this group had longer survival. This study provides insight into how IK somatic mutations contribute to EC pathophysiology. We analyzed the somatic mutational landscape of IK gene in 547 EC patients using expanded TCGA dataset. Co-immunoprecipitation and mass spectrometry were used to identify protein interactions. In vitro and in vivo experiments were used to evaluate IK's role in EC. The patients with IK-inactivating mutations had longer survival during 10-year follow-up. Frameshift and stop-gain were common mutations and were associated with decreased IK expression. IK knockdown led to enrichment of G2/M phase cells, inactivation of DNA repair signaling mediated by heterodimerization of Ku80 and Ku70, and sensitization of EC cells to cisplatin treatment. IK/Ku80 mutations were accompanied by higher mutation rates and associated with significantly better overall survival. Inactivating mutations of IK gene and loss of IK protein expression were associated with weakened Ku80/Ku70-mediated DNA repair, increased mutation burden, and better response to chemotherapy in patients with EC.

20.
Mol Ther Nucleic Acids ; 23: 930-943, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33614241

RESUMEN

Deregulation of noncoding RNAs, including microRNAs (miRs), is implicated in the pathogenesis of many human cancers, including breast cancer. Through extensive analysis of The Cancer Genome Atlas, we found that expression of miR-22-3p is markedly lower in triple-negative breast cancer (TNBC) than in normal breast tissue. The restoration of miR-22-3p expression led to significant inhibition of TNBC cell proliferation, colony formation, migration, and invasion. We demonstrated that miR-22-3p reduces eukaryotic elongation factor 2 kinase (eEF2K) expression by directly binding to the 3' untranslated region of eEF2K mRNA. Inhibition of EF2K expression recapitulated the effects of miR-22-3p on TNBC cell proliferation, motility, invasion, and suppression of phosphatidylinositol 3-kinase/Akt and Src signaling. Systemic administration of miR-22-3p in single-lipid nanoparticles significantly suppressed tumor growth in orthotopic MDA-MB-231 and MDA-MB-436 TNBC models. Evaluation of the tumor response, following miR-22-3p therapy in these models using a novel mathematical model factoring in various in vivo parameters, demonstrated that the therapy is highly effective against TNBC. These findings suggest that miR-22-3p functions as a tumor suppressor by targeting clinically significant oncogenic pathways and that miR-22-3p loss contributes to TNBC growth and progression. The restoration of miR-22-3p expression is a potential novel noncoding RNA-based therapy for TNBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA