Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0117623, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38170999

RESUMEN

Combat extremity wounds are highly susceptible to contamination from surrounding environmental material. This bioburden could be partially transferred from materials in immediate proximity to the wound, including fragments of the uniform and gear. However, the assessment of the microbial bioburden present on military gear during operational conditions of deployment or training is relatively unexplored. Opportunistic pathogens that can survive on gear represent risk factors for infection following injury, especially following combat blasts, where fibers and other materials are embedded in wounded tissue. We utilized 16S rRNA sequencing to assess the microbiome composition of different military gear types (boot, trouser, coat, and canteen) from two operational environments (training in Hawai'i and deployed in Indonesia) across time (days 0 and 14). We found that microbiome diversity, stability, and composition were dependent on gear type, training location, and sampling timepoint. At day 14, species diversity was significantly higher in Hawai'i samples compared to Indonesia samples for boot, coat, and trouser swabs. In addition, we observed the presence of potential microbial risk factors, as opportunistic pathogenic species, such as Acinetobacter, Pseudomonas, and Staphylococcus, were found to be present in all sample types and in both study sites. These study outcomes will be used to guide the design of antimicrobial materials and uniforms and for infection control efforts following combat blasts and other injuries, thereby improving treatment guidance during military training and deployment.IMPORTANCECombat extremity wounds are vulnerable to contamination from environments of proximity to the warfighter, leading to potential detrimental outcomes such as infection and delayed wound healing. Therefore, microbial surveillance of such environments is necessary to aid the advancement of military safety and preparedness through clinical diagnostics, treatment protocols, and uniform material design.


Asunto(s)
Personal Militar , Humanos , ARN Ribosómico 16S , Factores de Riesgo , Hawaii , Indonesia
2.
Environ Sci Technol ; 58(19): 8239-8250, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690747

RESUMEN

Sequencing human viruses in wastewater is challenging due to their low abundance compared to the total microbial background. This study compared the impact of four virus concentration/extraction methods (Innovaprep, Nanotrap, Promega, and Solids extraction) on probe-capture enrichment for human viruses followed by sequencing. Different concentration/extraction methods yielded distinct virus profiles. Innovaprep ultrafiltration (following solids removal) had the highest sequencing sensitivity and richness, resulting in the successful assembly of several near-complete human virus genomes. However, it was less sensitive in detecting SARS-CoV-2 by digital polymerase chain reaction (dPCR) compared to Promega and Nanotrap. Across all preparation methods, astroviruses and polyomaviruses were the most highly abundant human viruses, and SARS-CoV-2 was rare. These findings suggest that sequencing success can be increased using methods that reduce nontarget nucleic acids in the extract, though the absolute concentration of total extracted nucleic acid, as indicated by Qubit, and targeted viruses, as indicated by dPCR, may not be directly related to targeted sequencing performance. Further, using broadly targeted sequencing panels may capture viral diversity but risks losing signals for specific low-abundance viruses. Overall, this study highlights the importance of aligning wet lab and bioinformatic methods with specific goals when employing probe-capture enrichment for human virus sequencing from wastewater.


Asunto(s)
Aguas Residuales , Aguas Residuales/virología , Humanos , Virus/aislamiento & purificación , SARS-CoV-2 , Genoma Viral
3.
Microb Ecol ; 69(2): 346-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25351142

RESUMEN

The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.


Asunto(s)
Microbiología del Aire , ADN Bacteriano/aislamiento & purificación , Metagenómica/métodos , Bacillus thuringiensis/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biomasa , Ciudades , Variaciones en el Número de Copia de ADN , ADN Bacteriano/genética , District of Columbia , Monitoreo del Ambiente , Hongos/clasificación , Hongos/aislamiento & purificación , Metagenoma , Estaciones del Año , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
J Clin Microbiol ; 52(7): 2583-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24829242

RESUMEN

Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis por Micromatrices/métodos , Infección de Heridas/microbiología , Adulto , Bacterias/genética , Carga Bacteriana , Humanos , Personal Militar , Cicatrización de Heridas , Adulto Joven
5.
Sci Rep ; 14(1): 5006, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438404

RESUMEN

A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.


Asunto(s)
Calidad de Vida , Herida Quirúrgica , Humanos , Amputación Quirúrgica , Redes Reguladoras de Genes , Extremidades
6.
J Transl Med ; 11: 281, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24192341

RESUMEN

BACKGROUND: The ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma. METHODS: Wound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS. RESULTS: This approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy. CONCLUSION: These results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds.


Asunto(s)
Biomarcadores/metabolismo , Personal Militar , Proteínas/metabolismo , Guerra , Cicatrización de Heridas , Heridas y Lesiones/metabolismo , Adulto , Cromatografía Liquida , Análisis Discriminante , Humanos , Masculino , Espectrometría de Masas en Tándem , Electroforesis Bidimensional Diferencial en Gel , Adulto Joven
7.
Microbiol Spectr ; 11(6): e0252023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874143

RESUMEN

IMPORTANCE: Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.


Asunto(s)
Metagenoma , Heridas Relacionadas con la Guerra , Infección de Heridas , Humanos , Infección de Heridas/diagnóstico , Infección de Heridas/microbiología , Heridas Relacionadas con la Guerra/diagnóstico , Heridas Relacionadas con la Guerra/microbiología
8.
BMC Microbiol ; 12: 7, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22243650

RESUMEN

BACKGROUND: Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. RESULTS: We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. CONCLUSIONS: Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.


Asunto(s)
Mycobacterium tuberculosis/patogenicidad , Proteínas Quinasas/metabolismo , Tuberculosis del Sistema Nervioso Central/microbiología , Tuberculosis del Sistema Nervioso Central/patología , Factores de Virulencia/metabolismo , Animales , Carga Bacteriana , Encéfalo/microbiología , Citometría de Flujo , Cobayas , Microscopía Confocal , Análisis de Supervivencia
9.
Sci Rep ; 12(1): 13816, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970993

RESUMEN

Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.


Asunto(s)
Antiinfecciosos , Enfermedades Musculoesqueléticas , Infección de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Extremidades/lesiones , Humanos , Metagenoma , Metagenómica , Enfermedades Musculoesqueléticas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico
10.
J Infect Dis ; 201(11): 1743-52, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20394526

RESUMEN

BACKGROUND: Tuberculosis (TB) leads to the death of 1.7 million people annually. The failure of the bacille Calmette-Guérin vaccine, synergy between AIDS and TB, and the emergence of drug resistance have worsened this situation. It is imperative to delineate the mechanisms employed by Mycobacterium tuberculosis to successfully infect and persist in mammalian lungs. METHODS: Nonhuman primates (NHPs) are arguably the best animal system to model critical aspects of human TB. We studied genes essential for growth and survival of M. tuberculosis in the lungs of NHPs experimentally exposed to aerosols of an M. tuberculosis transposon mutant library. RESULTS: Mutants in 108 M. tuberculosis genes (33.13% of all genes tested) were attenuated for in vivo growth. Comparable studies have reported the attenuation of only approximately 6% of mutants in mice. The M. tuberculosis mutants attenuated for in vivo survival in primates were involved in the transport of various biomolecules, including lipid virulence factors; biosynthesis of cell-wall arabinan and peptidoglycan; DNA repair; sterol metabolism; and mammalian cell entry. CONCLUSIONS: Our study highlights the various virulence mechanisms employed by M. tuberculosis to overcome the hostile environment encountered during infection of primates. Prophylactic approaches aimed against bacterial factors that respond to such in vivo stressors have the potential to prevent infection at an early stage, thus likely reducing the extent of transmission of M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/genética , Macaca mulatta/microbiología , Viabilidad Microbiana , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Factores de Virulencia/genética , Animales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Mycobacterium tuberculosis/genética , Tuberculosis/patología , Virulencia
11.
Sci Rep ; 11(1): 15567, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330964

RESUMEN

Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.


Asunto(s)
Sistema Nervioso Central/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cobayas , Masculino , Compuestos de Pralidoxima/farmacología
12.
Curr Mol Med ; 9(2): 94-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19275620

RESUMEN

Central Nervous System (CNS) tuberculosis is a serious, often fatal form of tuberculosis, predominantly affecting young children. HIV co-infection and drug resistant strains of Mycobacterium tuberculosis are making the diagnosis and treatment of CNS tuberculosis more complicated. Current concepts about the pathogenesis of CNS tuberculosis are based on necropsy studies done in 1933, which suggest that tuberculous meningitis develops subsequent to the rupture into the cerebrospinal fluid of tuberculomas that form around M. tuberculosis deposited in the brain parenchyma and meninges during the initial hematogenous dissemination. Foreign antigens including pathogens deposited in the brain parenchyma are not detected efficiently by the immune system in the CNS. These experimental data may explain the clinical observation of delayed "paradoxical" enlargement or development of intracranial tuberculomas, observed several weeks to months in patients receiving anti-tuberculous therapy. Since severe sequelae are observed even when CNS tuberculosis is treated effectively, it is important to develop preventive strategies for this disease. Recent data utilizing animal models suggests that, in addition to host factors, M. tuberculosis genes and their encoded proteins may contribute specifically to bacterial invasion and survival in the CNS. Understanding how these microbial factors affect CNS disease would be essential to developing such preventive strategies.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Tuberculosis del Sistema Nervioso Central/patología , Animales , Barrera Hematoencefálica/fisiología , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis del Sistema Nervioso Central/complicaciones , Tuberculosis del Sistema Nervioso Central/fisiopatología , Tuberculosis Meníngea/etiología , Tuberculosis Meníngea/patología , Tuberculosis Meníngea/fisiopatología
13.
PLoS One ; 15(4): e0231838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32348348

RESUMEN

The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember's microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight. Additionally, environmental surface samples from eight different habitable locations in the ISS were collected from two flights. Environmental samples from one flight were collected by the crewmember and samples from the next flight were collected after the crewmember departed. The microbial composition in both environment and crewmember samples was measured using shotgun metagenomic sequencing and processed using the Livermore Metagenomics Analysis Toolkit. Ordination of sample to sample distances showed that of the eight crew body sites analyzed, skin, nostril, and ear samples are more similar in microbial composition to the ISS surfaces than mouth and saliva samples; and that the microbial composition of the crewmember's skin samples are more closely related to the ISS surface samples collected by the crewmember on the same flight than ISS surface samples collected by other crewmembers on different flights. In these collections, species alpha diversity in saliva samples appears to decrease during flight and rebound after returning to Earth. This is the first study to compare the ISS microbiome to a crewmember's microbiome via shotgun metagenomic sequencing. We observed that the microbiome of the surfaces inside the ISS resemble those of the crew's skin. These data support future crew and ISS microbial surveillance efforts and the design of preventive measures to maintain crew habitat onboard spacecraft destined for long term space travel.


Asunto(s)
Astronautas , Sistemas Ecológicos Cerrados , Microbiota/genética , Vuelo Espacial/instrumentación , Nave Espacial , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Monitoreo del Ambiente/métodos , Humanos , Metagenoma/genética , Saliva/microbiología , Piel/microbiología , Factores de Tiempo
14.
Sci Rep ; 10(1): 12399, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709938

RESUMEN

To explore how airborne microbial patterns change with height above the Earth's surface, we flew NASA's C-20A aircraft on two consecutive days in June 2018 along identical flight paths over the US Sierra Nevada mountain range at four different altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed significantly at each altitude sampled, and the diversity profile shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture-based detections also identified viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for field campaigns that monitor global bioaerosol emissions and impacts.

15.
PLoS One ; 14(2): e0212045, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735540

RESUMEN

Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. In this study, the Axiom Microbiome Array was evaluated to determine its sensitivity, specificity and utility in microbiome analysis of veterinary clinical samples. The array contains probes designed to detect more than 12,000 species of viruses, bacteria, fungi, protozoa and archaea, yielding the most comprehensive microbial detection platform built to date. The array was able to detect Shigella and Aspergillus at 100 genome copies, and vaccinia virus DNA at 1,000 genome copies. The Axiom Microbiome Array made correct species-level calls in mock microbial community samples. When tested against serum, tissue, and fecal samples from pigs experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2, the microarray correctly detected these two viruses and other common viral and bacterial microbiome species. This cost-effective and high-throughput microarray is an efficient tool to rapidly analyze large numbers of clinical and environmental samples for the presence of multiple viral and bacterial pathogens.


Asunto(s)
Análisis por Micromatrices/métodos , Microbiota , Animales , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Heces/microbiología , Heces/virología , Genoma Bacteriano , Genoma Viral , Ensayos Analíticos de Alto Rendimiento , Hibridación de Ácido Nucleico , Poxviridae/genética , Poxviridae/aislamiento & purificación , Reproducibilidad de los Resultados , Shigella flexneri/genética , Shigella flexneri/aislamiento & purificación , Porcinos
16.
PLoS One ; 14(4): e0213667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30995215

RESUMEN

The huemul (Hippocamelus bisulcus) is an endangered cervid endemic to southern Argentina and Chile. Here we report foot lesions in 24 huemul from Bernardo O'Higgins National Park, Chile, between 2005 and 2010. Affected deer displayed variably severe clinical signs, including lameness and soft tissue swelling of the limbs proximal to the hoof or in the interdigital space, ulceration of the swollen tissues, and some developed severe proliferative tissue changes that caused various types of abnormal wear, entrapment, and/or displacement of the hooves and/or dewclaws. Animals showed signs of intense pain and reduced mobility followed by loss of body condition and recumbency, which often preceded death. The disease affected both genders and all age categories. Morbidity and mortality reached 80% and 40%, respectively. Diagnostics were restricted to a limited number of cases from which samples were available. Histology revealed severe papillomatous epidermal hyperplasia and superficial dermatitis. Electron microscopy identified viral particles consistent with viruses in the Chordopoxvirinae subfamily. The presence of parapoxvirus DNA was confirmed by a pan-poxvirus PCR assay, showing high identity (98%) with bovine papular stomatitis virus and pseudocowpoxvirus. This is the first report of foot disease in huemul deer in Chile, putatively attributed to poxvirus. Given the high morbidity and mortality observed, this virus might pose a considerable conservation threat to huemul deer in Chilean Patagonia. Moreover, this report highlights a need for improved monitoring of huemul populations and synergistic, rapid response efforts to adequately address disease events that threaten the species.


Asunto(s)
Conservación de los Recursos Naturales , ADN Viral/sangre , Ciervos/virología , Especies en Peligro de Extinción , Enfermedades del Pie , Parapoxvirus/metabolismo , Infecciones por Poxviridae , Animales , Chile , Enfermedades del Pie/sangre , Enfermedades del Pie/veterinaria , Enfermedades del Pie/virología , Parques Recreativos , Infecciones por Poxviridae/sangre , Infecciones por Poxviridae/veterinaria , Infecciones por Poxviridae/virología
17.
Microbiome ; 5(1): 81, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716113

RESUMEN

BACKGROUND: The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. METHODS: This study examined the whole metagenome of ISS microbes at both species- and gene-level resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. RESULTS: Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. CONCLUSION: Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. The overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.


Asunto(s)
Archaea/genética , Bacterias/genética , Polvo/análisis , Metagenoma , Microbiota , Nave Espacial , Archaea/clasificación , Archaea/aislamiento & purificación , Astronautas , Bacterias/clasificación , Bacterias/aislamiento & purificación , Planificación Ambiental , Ambiente Controlado , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Agencias Internacionales , Metagenómica/métodos , Microbiota/genética , Filogenia , Vuelo Espacial , Ingravidez
18.
Chem Biol Interact ; 277: 159-167, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28941624

RESUMEN

Organophosphorus-based (OP) nerve agents represent some of the most toxic substances known to mankind. The current standard of care for exposure has changed very little in the past decades, and relies on a combination of atropine to block receptor activity and oxime-type acetylcholinesterase (AChE) reactivators to reverse the OP binding to AChE. Although these oximes can block the effects of nerve agents, their overall efficacy is reduced by their limited capacity to cross the blood-brain barrier (BBB). RS194B, a new oxime developed by Radic et al. (J. Biol. Chem., 2012) has shown promise for enhanced ability to cross the BBB. To fully assess the potential of this compound as an effective treatment for nerve agent poisoning, a comprehensive evaluation of its pharmacokinetic (PK) and biodistribution profiles was performed using both intravenous and intramuscular exposure routes. The ultra-sensitive technique of accelerator mass spectrometry was used to quantify the compound's PK profile, tissue distribution, and brain/plasma ratio at four dose concentrations in guinea pigs. PK analysis revealed a rapid distribution of the oxime with a plasma t1/2 of ∼1 h. Kidney and liver had the highest concentrations per gram of tissue followed by lung, spleen, heart and brain for all dose concentrations tested. The Cmax in the brain ranged between 0.03 and 0.18% of the administered dose, and the brain-to-plasma ratio ranged from 0.04 at the 10 mg/kg dose to 0.18 at the 200 mg/kg dose demonstrating dose dependent differences in brain and plasma concentrations. In vitro studies show that both passive diffusion and active transport contribute little to RS194B traversal of the BBB. These results indicate that biodistribution is widespread, but very low quantities accumulate in the guinea pig brain, indicating this compound may not be suitable as a centrally active reactivator.


Asunto(s)
Acetamidas/farmacocinética , Reactivadores de la Colinesterasa/farmacocinética , Oximas/farmacocinética , Acetamidas/administración & dosificación , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Reactivadores de la Colinesterasa/administración & dosificación , Cobayas , Riñón/metabolismo , Masculino , Oximas/administración & dosificación , Oximas/metabolismo , Distribución Tisular
19.
J Phys Chem B ; 121(20): 5228-5237, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28453293

RESUMEN

Membrane permeability is a key property to consider during the drug design process, and particularly vital when dealing with small molecules that have intracellular targets as their efficacy highly depends on their ability to cross the membrane. In this work, we describe the use of umbrella sampling molecular dynamics (MD) computational modeling to comprehensively assess the passive permeability profile of a range of compounds through a lipid bilayer. The model was initially calibrated through in vitro validation studies employing a parallel artificial membrane permeability assay (PAMPA). The model was subsequently evaluated for its quantitative prediction of permeability profiles for a series of custom synthesized and closely related compounds. The results exhibited substantially improved agreement with the PAMPA data, relative to alternative existing methods. Our work introduces a computational model that underwent progressive molding and fine-tuning as a result of its synergistic collaboration with numerous in vitro PAMPA permeability assays. The presented computational model introduces itself as a useful, predictive tool for permeability prediction.


Asunto(s)
Permeabilidad de la Membrana Celular , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Difusión , Diseño de Fármacos , Humanos , Membrana Dobles de Lípidos/química , Preparaciones Farmacéuticas/síntesis química , Teoría Cuántica , Reproducibilidad de los Resultados
20.
PLoS One ; 11(4): e0152604, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27054586

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Filogenia , Polimorfismo de Nucleótido Simple , Animales , Cricetinae/virología , Culicidae/virología , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Venezolana/epidemiología , Variación Genética , Genoma Viral , Genotipo , Interacciones Huésped-Patógeno/genética , México/epidemiología , Ratones Endogámicos/virología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA