Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 323(2): C595-C605, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848618

RESUMEN

Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulate protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown. The aim of this study was to characterize the expressional and functional relevance of LAT1 during different stages of myogenesis and in response to growth and atrophic conditions in vitro. We determined that LAT1 is expressed by C2C12 and human primary myoblasts, and its gene expression is lower during differentiation (P < 0.05). Pharmacological inhibition and genetic knockdown of LAT1 impaired myoblast viability, differentiation, and fusion (all P < 0.05). LAT1 protein content in C2C12 myoblasts was not significantly altered in response to different leucine concentrations in cell culture media or in two in vitro atrophy models. However, LAT1 content was decreased in myotubes under atrophic conditions in vitro (P < 0.05). These findings indicate that LAT1 is stable throughout myogenesis and in response to several in vitro conditions that induce muscle remodeling. Further, amino acid transport through LAT1 is required for normal myogenesis in vitro.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Desarrollo de Músculos , Aminoácidos/metabolismo , Células Cultivadas , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/metabolismo , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo
2.
Hepatology ; 74(3): 1287-1299, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33743554

RESUMEN

BACKGROUND AND AIMS: It is proposed that impaired expansion of subcutaneous adipose tissue (SAT) and an increase in adipose tissue (AT) fibrosis causes ectopic lipid accumulation, insulin resistance (IR), and metabolically unhealthy obesity. We therefore evaluated whether a decrease in SAT expandability, assessed by measuring SAT lipogenesis (triglyceride [TG] production), and an increase in SAT fibrogenesis (collagen production) are associated with NAFLD and IR in persons with obesity. APPROACH AND RESULTS: In vivo abdominal SAT lipogenesis and fibrogenesis, expression of SAT genes involved in extracellular matrix (ECM) formation, and insulin sensitivity were assessed in three groups of participants stratified by adiposity and intrahepatic TG (IHTG) content: (1) healthy lean with normal IHTG content (Lean-NL; n = 12); (2) obese with normal IHTG content and normal glucose tolerance (Ob-NL; n = 25); and (3) obese with NAFLD and abnormal glucose metabolism (Ob-NAFLD; n = 25). Abdominal SAT TG synthesis rates were greater (P < 0.05) in both the Ob-NL (65.9 ± 4.6 g/wk) and Ob-NAFLD groups (71.1 ± 6.7 g/wk) than the Lean-NL group (16.2 ± 2.8 g/wk) without a difference between the Ob-NL and Ob-NAFLD groups. Abdominal SAT collagen synthesis rate and the composite expression of genes encoding collagens progressively increased from the Lean-NL to the Ob-NL to the Ob-NAFLD groups and were greater in the Ob-NAFLD than the Ob-NL group (P < 0.05). Composite expression of collagen genes was inversely correlated with both hepatic and whole-body insulin sensitivity (P < 0.001). CONCLUSIONS: AT expandability is not impaired in persons with obesity and NAFLD. However, SAT fibrogenesis is greater in persons with obesity and NAFLD than in those with obesity and normal IHTG content, and is inversely correlated with both hepatic and whole-body insulin sensitivity.


Asunto(s)
Colágeno/metabolismo , Intolerancia a la Glucosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Grasa Subcutánea Abdominal/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Adulto , Matriz Extracelular/metabolismo , Femenino , Fibrosis , Intolerancia a la Glucosa/complicaciones , Humanos , Resistencia a la Insulina , Lipogénesis , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad/complicaciones , Grasa Subcutánea/metabolismo
3.
J Nutr ; 149(9): 1511-1522, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152658

RESUMEN

BACKGROUND: Resistance exercise and dietary protein stimulate muscle protein synthesis (MPS). The rate at which proteins are digested and absorbed into circulation alters peak plasma amino acid concentrations and may modulate postexercise MPS. A novel mineral modified milk protein concentrate (mMPC), with identical amino acid composition to standard milk protein concentrate (MPC), was formulated to induce rapid aminoacidemia. OBJECTIVES: The aim of this study was to determine whether rapid aminoacidemia and greater peak essential amino acid (EAA) concentrations induced by mMPC would stimulate greater postresistance exercise MPS, anabolic signaling, and ribosome biogenesis compared to standard dairy proteins, which induce a small but sustained plasma essential aminoacidemia. METHODS: Thirty healthy young men (22.5 ± 3.0 y; BMI 23.8 ± 2.7 kg/m2) received primed constant infusions of l-[ring-13C6]-phenylalanine and completed 3 sets of leg presses and leg extensions at 80% of 1 repetition. Afterwards, participants were randomly assigned in a double-blind fashion to consume 25 g mMPC, MPC, or calcium caseinate (CAS). Vastus lateralis biopsies were collected at rest, and 2 and 4 h post exercise. RESULTS: Plasma EAA concentrations, including leucine, were 19.2-26.6% greater in the mMPC group 45-90 min post ingestion than in MPC and CAS groups (P < 0.001). Myofibrillar fractional synthetic rate from baseline to 4 h was increased by 82.6 ± 64.8%, 137.8 ± 72.1%, and 140.6 ± 52.4% in the MPC, mMPC, and CAS groups, respectively, with no difference between groups (P = 0.548). Phosphorylation of anabolic signaling targets (P70S6KThr389, P70S6KThr421/Ser424, RPS6Ser235/236, RPS6Ser240/244, P90RSKSer380, 4EBP1) were elevated by <3-fold at both 2 and 4 h post exercise in all groups (P < 0.05). CONCLUSIONS: The amplitude of plasma leucine and EAA concentrations does not modulate the anabolic response to resistance exercise after ingestion of 25 g dairy protein in young men. This trial was registered at http://www.anzctr.org.au/ as ACTRN12617000393358.


Asunto(s)
Aminoácidos Esenciales/sangre , Ejercicio Físico , Proteínas de la Leche/administración & dosificación , Adolescente , Adulto , Método Doble Ciego , Humanos , Insulina/sangre , Masculino , Proteínas Musculares/biosíntesis , Entrenamiento de Fuerza , Proteínas Ribosómicas/análisis , Adulto Joven
4.
Am J Physiol Cell Physiol ; 315(4): C537-C543, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133322

RESUMEN

We have recently demonstrated that whole egg ingestion induces a greater muscle protein synthetic (MPS) response when compared with isonitrogenous egg white ingestion after resistance exercise in young men. Our aim was to determine whether whole egg or egg white ingestion differentially influenced colocalization of key regulators of mechanistic target of rapamycin complex 1 (mTORC1) as means to explain our previously observed divergent postexercise MPS response. In crossover trials, 10 healthy resistance-trained men (21 ± 1 yr; 88 ± 3 kg; body fat: 16 ± 1%; means ± SE) completed lower body resistance exercise before ingesting whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Muscle biopsies were obtained before exercise and at 120 and 300 min after egg ingestion to assess, by immunofluorescence, protein colocalization of key anabolic signaling molecules. After resistance exercise, tuberous sclerosis 2-Ras homolog enriched in brain (Rheb) colocalization decreased ( P < 0.01) at 120 and 300 min after whole egg and egg white ingestion with concomitant increases ( P < 0.01) in mTOR-Rheb colocalization. After resistance exercise, mTOR-lysosome-associated membrane protein 2 (LAMP2) colocalization significantly increased at 120 and 300 min only after whole egg ingestion ( P < 0.01), and mTOR-LAMP2 colocalization correlated with rates of MPS at rest and after exercise ( r = 0.40, P < 0.05). We demonstrated that the greater postexercise MPS response with whole egg ingestion is related in part to an enhanced recruitment of mTORC1-Rheb complexes to the lysosome during recovery. These data suggest nonprotein dietary factors influence the postexercise regulation of mRNA translation in human skeletal muscle.


Asunto(s)
Proteínas del Huevo/metabolismo , Ejercicio Físico/fisiología , Lisosomas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Animales , Proteínas en la Dieta/metabolismo , Ingestión de Alimentos/fisiología , Huevos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Masculino , Ratones , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Entrenamiento de Fuerza/métodos , Adulto Joven
5.
J Physiol ; 596(21): 5119-5133, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30113718

RESUMEN

KEY POINTS: Lifestyle modifications that include the regular performance of exercise are probably important for counteracting the negative consequences of obesity on postprandial myofibrillar protein synthetic responses to protein dense food ingestion. We show that the interactive effect of resistance exercise and feeding on the stimulation of myofibrillar protein synthesis rates is diminished with obesity compared to normal weight adults. The blunted myofibrillar protein synthetic response with resistance exercise in people with obesity may be underpinned by alterations in muscle anabolic signalling phosphorylation (p70S6K and 4E-BP1). The results obtained in the present study suggest that further exercise prescription manipulation may be necessary to optimize post-exercise myofibrillar protein synthesis rates in adults with obesity. ABSTRACT: We aimed to determine whether obesity alters muscle anabolic and inflammatory signalling phosphorylation and also muscle protein synthesis within the myofibrillar (MYO) and sarcoplasmic (SARC) protein fractions after resistance exercise. Nine normal weight (NW) (21 ± 1 years, body mass index 22 ± 1 kg m-2 ) and nine obese (OB) (22 ± 1 years, body mass index 36 ± 2 kg m-2 ) adults received l-[ring-13 C6 ]phenylalanine infusions with blood and muscle sampling at basal and fed-state of the exercise (EX) and non-exercise (CON) legs. Participants performed unilateral leg extensions and consumed pork (36 g of protein) immediately after exercise. Basal muscle Toll-like receptor 4 (TLR4) protein was similar between OB and NW groups (P > 0.05) but increased at 300 min after pork ingestion only in the OB group (P = 0.03). Resistance exercise reduced TLR4 protein in the OB group at 300 min (EX vs. CON leg in OB: P = 0.04). Pork ingestion increased p70S6K phosphorylation at 300 min in CON and EX of the OB and NW groups (P > 0.05), although the response was lower in the EX leg of OB vs. NW at 300 min (P = 0.05). Basal MYO was similar between the NW and OB groups (P > 0.05) and was stimulated by pork ingestion in the EX and CON legs in both groups (Δ from basal NW: CON 0.04 ± 0.01% h-1 ; EX 0.10 ± 0.02% h-1 ; OB: CON 0.06 ± 0.01% h-1 ; EX 0.06 ± 0.01% h-1 ; P < 0.05). MYO was more strongly stimulated in the EX vs. CON legs in NW (P = 0.02) but not OB (P = 0.26). SARC was feeding sensitive but not further potentiated by resistance exercise in both groups. Our results suggest that obesity may attenuate the effectiveness of resistance exercise to augment fed-state MYO.


Asunto(s)
Ingestión de Alimentos , Miofibrillas/metabolismo , Obesidad/metabolismo , Entrenamiento de Fuerza , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular , Femenino , Humanos , Masculino , Obesidad/fisiopatología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Adulto Joven
6.
7.
Clin Exp Pharmacol Physiol ; 44(7): 729-738, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28394459

RESUMEN

Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high-intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia-mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen-depleting exercise and ingested a low-carbohydrate dinner (1200 kcals, <10% carbohydrate). The next morning, in either normoxia or hypoxia (FiO2 =0.15), they ingested a high-carbohydrate breakfast (1225 kcals, 70% carbohydrate). Placebo (719 mg maltodextrin) or metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (P<.001). Neither hypoxia nor metformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 µU/mL vs 48.5±7.8 µU/mL; mean±SE; P<.001). Post-breakfast, pre-exercise vastus lateralis glycogen content increased in normoxia (+33%: P=.025) and in hypoxia with metformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (P<.01). This decrement was similar with placebo (+2.6±0.8 minutes) and metformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude.


Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Metformina/farmacología , Sustancias para Mejorar el Rendimiento/farmacología , Adulto , Ejercicio Físico/fisiología , Glucógeno/metabolismo , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
8.
J Nutr ; 146(7): 1428-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27281809

RESUMEN

BACKGROUND: Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e., intrinsically labeled protein). OBJECTIVE: We assessed the practicality of producing eggs and poultry meat intrinsically labeled with l-[5,5,5-(2)H3]leucine through noninvasive oral tracer administration. METHODS: A specifically formulated diet containing 0.52% leucine was supplemented with 0.3% l-[5,5,5-(2)H3]leucine and subsequently fed to 3 laying hens (Lohmann LSL Whites) for 55 d. On day 55, the hens were slaughtered and their meat, bones, and organs were harvested to determine tissue labeling. In Expt. 1, 2 healthy young men [mean ± SEM age: 22 ± 1.5 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23.7 ± 0.5] ingested 18 g l-[5,5,5-(2)H3]leucine-labeled egg protein. In Expt. 2, 2 healthy young men (mean ± SEM age: 20.0 ± 0.0 y; mean ± SEM BMI: 26.4 ± 3.1) ingested 28 g l-[5,5,5-(2)H3]leucine-labeled poultry meat protein. Plasma samples (Expts. 1 and 2) and muscle biopsies (Expt. 1) were collected before and after labeled-food ingestion. RESULTS: High tracer labeling [>20 mole percent excess (MPE)] in the eggs was obtained after 7 d and maintained throughout the feeding protocol (P < 0.05). Over a 55-d period, ∼850 g egg protein (145 eggs) was produced, with a mean ± SEM tracer enrichment of 22.0 ± 0.8 MPE. Mean ± SEM l-[5,5,5-(2)H3]leucine enrichment in the meat was 9.6 ± 0.1 MPE. In Expts. 1 and 2, the consumption of labeled eggs and poultry meat protein increased plasma l-[5,5,5-(2)H3]leucine enrichment, with mean ± SEM peak values of 6.7 ± 0.1 MPE and 4.0 ± 0.9 MPE, respectively. The mean ± SEM 5-h postprandial increase in myofibrillar l-[5,5,5-(2)H3]leucine enrichment after egg ingestion in healthy young men was 0.051 ± 0.008 MPE (Expt. 1). CONCLUSION: We demonstrated the feasibility of producing intrinsically labeled eggs and poultry meat for use in human metabolic research.


Asunto(s)
Huevos/análisis , Carne/análisis , Trazadores Radiactivos , Animales , Huesos/química , Isótopos de Carbono , Pollos , Proteínas en la Dieta/análisis , Proteínas en la Dieta/metabolismo , Femenino , Humanos , Marcaje Isotópico , Masculino , Comidas , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Ciencias de la Nutrición , Adulto Joven
9.
J Exp Biol ; 217(Pt 16): 2947-55, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24902742

RESUMEN

Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.


Asunto(s)
Buceo , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Phocidae/fisiología , Adaptación Fisiológica , Adulto , Animales , Respiración de la Célula , Ácidos Grasos/metabolismo , Humanos , Masculino , Oxidación-Reducción , Fosforilación , Adulto Joven
10.
J Appl Physiol (1985) ; 136(6): 1388-1399, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385186

RESUMEN

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.


Asunto(s)
Proteínas Musculares , Miofibrillas , Posmenopausia , Periodo Posprandial , Entrenamiento de Fuerza , Proteína de Suero de Leche , Humanos , Femenino , Posmenopausia/fisiología , Posmenopausia/metabolismo , Entrenamiento de Fuerza/métodos , Persona de Mediana Edad , Periodo Posprandial/fisiología , Miofibrillas/metabolismo , Proteínas Musculares/biosíntesis , Proteínas Musculares/metabolismo , Proteína de Suero de Leche/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiología , Anciano , Fenilalanina/metabolismo , Biosíntesis de Proteínas/fisiología , Suplementos Dietéticos , Adulto , Ejercicio Físico/fisiología , Fosforilación
11.
Nat Metab ; 5(7): 1221-1235, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37365374

RESUMEN

The additional therapeutic effects of regular exercise during a dietary weight loss program in people with obesity and prediabetes are unclear. Here, we show that whole-body (primarily muscle) insulin sensitivity (primary outcome) was 2-fold greater (P = 0.006) after 10% weight loss induced by calorie restriction plus exercise training (Diet+EX; n = 8, 6 women) than 10% weight loss induced by calorie restriction alone (Diet-ONLY; n = 8, 4 women) in participants in two concurrent studies. The greater improvement in insulin sensitivity was accompanied by increased muscle expression of genes involved in mitochondrial biogenesis, energy metabolism and angiogenesis (secondary outcomes) in the Diet+EX group. There were no differences between groups in plasma branched-chain amino acids or markers of inflammation, and both interventions caused similar changes in the gut microbiome. Few adverse events were reported. These results demonstrate that regular exercise during a diet-induced weight loss program has profound additional metabolic benefits in people with obesity and prediabetes.Trial Registration: ClinicalTrials.gov (NCT02706262 and NCT02706288).


Asunto(s)
Ejercicio Físico , Obesidad , Estado Prediabético , Pérdida de Peso , Humanos , Estado Prediabético/dietoterapia , Obesidad/dietoterapia , Resistencia a la Insulina , Restricción Calórica , Biogénesis de Organelos , Metabolismo Energético , Microbioma Gastrointestinal , Masculino , Femenino , Capacidad Cardiovascular , Músculo Esquelético , Glucemia , Transcriptoma , Proteoma , Adulto
12.
JHEP Rep ; 5(11): 100877, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869071

RESUMEN

Background & Aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. Methods: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. Results: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14+ monocyte/macrophage number correlated with the degree of steatosis. Using mouse models of early liver steatosis, we demonstrate that recruitment of MdMs precedes Kupffer cell loss and liver damage. Electron microscopy of isolated macrophages revealed increased lipid accumulation in MdMs, and ex vivo lipid transfer experiments suggested that MdMs may serve a distinct role in lipid uptake during MAFLD. Conclusions: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. Impact and implications: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD.

13.
Nat Commun ; 13(1): 784, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145074

RESUMEN

Type 2 diabetes is associated with insulin resistance, impaired pancreatic ß-cell insulin secretion, and nonalcoholic fatty liver disease. Tissue-specific SWELL1 ablation impairs insulin signaling in adipose, skeletal muscle, and endothelium, and impairs ß-cell insulin secretion and glycemic control. Here, we show that ICl,SWELL and SWELL1 protein are reduced in adipose and ß-cells in murine and human diabetes. Combining cryo-electron microscopy, molecular docking, medicinal chemistry, and functional studies, we define a structure activity relationship to rationally-design active derivatives of a SWELL1 channel inhibitor (DCPIB/SN-401), that bind the SWELL1 hexameric complex, restore SWELL1 protein, plasma membrane trafficking, signaling, glycemic control and islet insulin secretion via SWELL1-dependent mechanisms. In vivo, SN-401 restores glycemic control, reduces hepatic steatosis/injury, improves insulin-sensitivity and insulin secretion in murine diabetes. These findings demonstrate that SWELL1 channel modulators improve SWELL1-dependent systemic metabolism in Type 2 diabetes, representing a first-in-class therapeutic approach for diabetes and nonalcoholic fatty liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Control Glucémico/métodos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo/metabolismo , Animales , Microscopía por Crioelectrón , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Transducción de Señal , Transcriptoma
14.
Front Nutr ; 8: 615849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026802

RESUMEN

Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population.

15.
Cell Rep ; 34(2): 108626, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440159

RESUMEN

Macrophage-mediated inflammation is critical in the pathogenesis of non-alcoholic steatohepatitis (NASH). Here, we describe that, with high-fat, high-sucrose-diet feeding, mature TIM4pos Kupffer cells (KCs) decrease in number, while monocyte-derived Tim4neg macrophages accumulate. In concert, monocyte-derived infiltrating macrophages enter the liver and consist of a transitional subset that expresses Cx3cr1/Ccr2 and a second subset characterized by expression of Trem2, Cd63, Cd9, and Gpmnb; markers ascribed to lipid-associated macrophages (LAMs). The Cx3cr1/Ccr2-expressing macrophages, referred to as C-LAMs, localize to macrophage aggregates and hepatic crown-like structures (hCLSs) in the steatotic liver. In C-motif chemokine receptor 2 (Ccr2)-deficient mice, C-LAMs fail to appear in the liver, and this prevents hCLS formation, reduces LAM numbers, and increases liver fibrosis. Taken together, our data reveal dynamic changes in liver macrophage subsets during the pathogenesis of NASH and link these shifts to pathologic tissue remodeling.


Asunto(s)
Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ingeniería de Tejidos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
16.
J Clin Invest ; 130(12): 6688-6699, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164985

RESUMEN

BACKGROUNDData from studies conducted in rodent models have shown that decreased adipose tissue (AT) oxygenation is involved in the pathogenesis of obesity-induced insulin resistance. Here, we evaluated the potential influence of AT oxygenation on AT biology and insulin sensitivity in people.METHODSWe evaluated subcutaneous AT oxygen partial pressure (pO2); liver and whole-body insulin sensitivity; AT expression of genes and pathways involved in inflammation, fibrosis, and branched-chain amino acid (BCAA) catabolism; systemic markers of inflammation; and plasma BCAA concentrations, in 3 groups of participants that were rigorously stratified by adiposity and insulin sensitivity: metabolically healthy lean (MHL; n = 11), metabolically healthy obese (MHO; n = 15), and metabolically unhealthy obese (MUO; n = 20).RESULTSAT pO2 progressively declined from the MHL to the MHO to the MUO group, and was positively associated with hepatic and whole-body insulin sensitivity. AT pO2 was positively associated with the expression of genes involved in BCAA catabolism, in conjunction with an inverse relationship between AT pO2 and plasma BCAA concentrations. AT pO2 was negatively associated with AT gene expression of markers of inflammation and fibrosis. Plasma PAI-1 increased from the MHL to the MHO to the MUO group and was negatively correlated with AT pO2, whereas the plasma concentrations of other cytokines and chemokines were not different among the MHL and MUO groups.CONCLUSIONThese results support the notion that reduced AT oxygenation in individuals with obesity contributes to insulin resistance by increasing plasma PAI-1 concentrations and decreasing AT BCAA catabolism and thereby increasing plasma BCAA concentrations.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGThis study was supported by NIH grants K01DK109119, T32HL130357, K01DK116917, R01ES027595, P42ES010337, DK56341 (Nutrition Obesity Research Center), DK20579 (Diabetes Research Center), DK052574 (Digestive Disease Research Center), and UL1TR002345 (Clinical and Translational Science Award); NIH Shared Instrumentation Grants S10RR0227552, S10OD020025, and S10OD026929; and the Foundation for Barnes-Jewish Hospital.


Asunto(s)
Resistencia a la Insulina , Obesidad/metabolismo , Oxígeno/metabolismo , Grasa Subcutánea/metabolismo , Adulto , Aminoácidos de Cadena Ramificada/metabolismo , Biomarcadores/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Obesidad/patología , Grasa Subcutánea/patología
17.
J Clin Invest ; 130(3): 1453-1460, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31805015

RESUMEN

BACKGROUNDAn increase in intrahepatic triglyceride (IHTG) is the hallmark feature of nonalcoholic fatty liver disease (NAFLD) and is decreased by weight loss. Hepatic de novo lipogenesis (DNL) contributes to steatosis in individuals with NAFLD. The physiological factors that stimulate hepatic DNL and the effect of weight loss on hepatic DNL are not clear.METHODSHepatic DNL, 24-hour integrated plasma insulin and glucose concentrations, and both liver and whole-body insulin sensitivity were determined in individuals who were lean (n = 14), obese with normal IHTG content (n = 26), or obese with NAFLD (n = 27). Hepatic DNL was assessed using the deuterated water method corrected for the potential confounding contribution of adipose tissue DNL. Liver and whole-body insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp procedure in conjunction with glucose tracer infusion. Six subjects in the obese-NAFLD group were also evaluated before and after a diet-induced weight loss of 10%.RESULTSThe contribution of hepatic DNL to IHTG-palmitate was 11%, 19%, and 38% in the lean, obese, and obese-NAFLD groups, respectively. Hepatic DNL was inversely correlated with hepatic and whole-body insulin sensitivity, but directly correlated with 24-hour plasma glucose and insulin concentrations. Weight loss decreased IHTG content, in conjunction with a decrease in hepatic DNL and 24-hour plasma glucose and insulin concentrations.CONCLUSIONSThese data suggest hepatic DNL is an important regulator of IHTG content and that increases in circulating glucose and insulin stimulate hepatic DNL in individuals with NAFLD. Weight loss decreased IHTG content, at least in part, by decreasing hepatic DNL.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGThis study was supported by NIH grants DK56341 (Nutrition Obesity Research Center), DK20579 (Diabetes Research Center), DK52574 (Digestive Disease Research Center), and RR024992 (Clinical and Translational Science Award), and by grants from the Academy of Nutrition and Dietetics Foundation, the College of Natural Resources of UCB, and the Pershing Square Foundation.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Glucemia/metabolismo , Femenino , Humanos , Insulina/sangre , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/metabolismo , Triglicéridos/metabolismo
18.
Metabolism ; 102: 153996, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678069

RESUMEN

BACKGROUND: We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle. AIMS: We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat. METHODS: Ten lean [Body mass index (BMI) (in kg/m2): 22.7 ±â€¯0.4; Homeostatic model assessment of insulin resistance (HOMAIR): 1.36 ±â€¯0.17], 10 overweight (BMI: 27.1 ±â€¯0.5; HOMAIR: 1.25 ±â€¯0.11), and 10 obese (BMI: 35.9 ±â€¯1.3; HOMAIR: 5.82 ±â€¯0.81) adults received primed continuous L-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at 0 min (post-absorptive), 120 min and 300 min relative to the ingestion of 170 g pork loin (36 g protein and 5 g fat) to examine skeletal muscle protein signalling, plasma proteomic signatures, and whole-body phenylalanine disappearance rates (Rd). RESULTS: Phenylalanine Rd was not different in obese compared to lean individuals at all time points and was not responsive to a pork ingestion (basal, P = 0.056; 120 & 300 min, P > 0.05). IP6K1 was elevated in obese individuals at 120 min post-prandial vs basal (P < 0.05). There were no acute differences plasma proteomic profiles between groups in the post-prandial state (P > 0.05). CONCLUSIONS: These data demonstrate, for the first time that muscle IP6K1 protein content is elevated after lean meat ingestion in obese adults, suggesting that IP6K1 may be contributing to the dysregulation of nutrient uptake in skeletal muscle. In addition, proteomic analysis showed no differences in proteomic signatures between obese, overweight or lean individuals.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Ingestión de Alimentos/fisiología , Carne , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proteoma/metabolismo , Adulto , Factores de Edad , Proteínas Sanguíneas/análisis , Índice de Masa Corporal , Grasas de la Dieta/farmacología , Metabolismo Energético/fisiología , Femenino , Glucosa/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Proteínas Musculares/análisis , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Obesidad/sangre , Obesidad/patología , Fosfotransferasas (Aceptor del Grupo Fosfato)/análisis , Periodo Posprandial/fisiología , Proteoma/análisis , Delgadez/sangre , Delgadez/metabolismo , Delgadez/patología , Adulto Joven
19.
Front Nutr ; 6: 87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263701

RESUMEN

Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle.

20.
Sports Med ; 49(Suppl 1): 59-68, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30671904

RESUMEN

Protein recommendations are provided on a daily basis as defined by the recommended dietary allowance (RDA) at 0.80 g protein/kg/day. However, meal-based, as opposed to daily, dietary protein recommendations are likely more informative given the role of the daily protein distribution pattern in modulating the post-exercise muscle protein synthetic response. Current protein meal recommendations to plateau post-exercise muscle protein synthesis rates are based on the ingestion of isolated protein sources, and not protein-rich whole foods. It is generally more common to eat whole food sources of dietary protein within a normal eating pattern to meet dietary protein requirements. Yet, there is a need to define how dietary protein action on muscle protein synthesis rates can be modulated by other nutrients within a food matrix to achieve protein requirements for optimal muscle adaptations. Recent developments suggest that the identification of an "optimal" protein source should likely consider the characteristics of the protein and the food matrix in which it is consumed. This review aims to discuss recent concepts related to protein quality, and the potential interactive effects of the food matrix, to achieve optimal protein requirements and elicit a robust postprandial muscle protein synthetic response with an emphasis on the post-exercise recovery window.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Ejercicio Físico , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Aminoácidos , Dieta , Alimentos , Humanos , Necesidades Nutricionales , Valor Nutritivo , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA