Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
2.
Nature ; 590(7845): 290-299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568819

RESUMEN

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Citocromo P-450 CYP2D6/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL , Mutación con Pérdida de Función , Mutagénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Densidad de Población , Medicina de Precisión/normas , Control de Calidad , Tamaño de la Muestra , Estados Unidos , Secuenciación Completa del Genoma/normas
3.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932938

RESUMEN

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Asunto(s)
Exoma , Variación Genética , Estudio de Asociación del Genoma Completo , Lípidos/sangre , Sistemas de Lectura Abierta , Alelos , Glucemia/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Anotación de Secuencia Molecular , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple
4.
Hum Mol Genet ; 31(3): 347-361, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34553764

RESUMEN

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicina de Precisión , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Estados Unidos
5.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582791

RESUMEN

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Asunto(s)
Asma/epidemiología , Biomarcadores/metabolismo , Dermatitis Atópica/epidemiología , Leucocitos/patología , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Sitios de Carácter Cuantitativo , Asma/genética , Asma/metabolismo , Asma/patología , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Pronóstico , Proteoma/análisis , Proteoma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Reino Unido/epidemiología , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
6.
Am J Hum Genet ; 108(5): 874-893, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887194

RESUMEN

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.


Asunto(s)
Eritrocitos/metabolismo , Eritrocitos/patología , Estudio de Asociación del Genoma Completo , National Heart, Lung, and Blood Institute (U.S.)/organización & administración , Fenotipo , Adulto , Anciano , Cromosomas Humanos Par 16/genética , Conjuntos de Datos como Asunto , Femenino , Edición Génica , Variación Genética/genética , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Control de Calidad , Reproducibilidad de los Resultados , Estados Unidos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38874616

RESUMEN

Aging is associated with a significant decline in exercise fitness assessed by maximal exercise oxygen consumption (VO2-max). The specific VO2-max components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A-V) O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age 21-96 years; average follow-up 12.6 years) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. VO2-peak, a surrogate of VO2-max, was used to assess aerobic capacity during upright cycle exercise. Peak exercise left ventricular (LV) volumes, heart rate, and cardiac output were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A-V) O2-peak from CO-peak and VO2-peak. In unadjusted models, VO2-peak, (A-V) O2-peak, and CO-peakdeclined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in VO2-peak and (A-V) O2 peak were observed with advanced entry age but not in CO-peak. The association between the declines in VO2-peak and (A-V) O2-peakwas stronger among those >=50 years compared to their younger counterparts but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak VO2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A-V) O2 are warranted.

8.
Genet Epidemiol ; 46(3-4): 170-181, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35312098

RESUMEN

Genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with complex traits; however, the identified SNPs account for a fraction of trait heritability, and identifying the functional elements through which genetic variants exert their effects remains a challenge. Recent evidence suggests that SNPs associated with complex traits are more likely to be expression quantitative trait loci (eQTL). Thus, incorporating eQTL information can potentially improve power to detect causal variants missed by traditional GWAS approaches. Using genomic, transcriptomic, and platelet phenotype data from the Genetic Study of Atherosclerosis Risk family-based study, we investigated the potential to detect novel genomic risk loci by incorporating information from eQTL in the relevant target tissues (i.e., platelets and megakaryocytes) using established statistical principles in a novel way. Permutation analyses were performed to obtain family-wise error rates for eQTL associations, substantially lowering the genome-wide significance threshold for SNP-phenotype associations. In addition to confirming the well known association between PEAR1 and platelet aggregation, our eQTL-focused approach identified a novel locus (rs1354034) and gene (ARHGEF3) not previously identified in a GWAS of platelet aggregation phenotypes. A colocalization analysis showed strong evidence for a functional role of this eQTL.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Receptores de Superficie Celular , Transcriptoma
9.
Blood ; 137(7): 959-968, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33094331

RESUMEN

Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.


Asunto(s)
Plaquetas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Megacariocitos/metabolismo , ARN/genética , Transcriptoma , Adulto , Población Negra/genética , Plaquetas/citología , Células Cultivadas , Femenino , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Megacariocitos/citología , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN/biosíntesis , RNA-Seq , Población Blanca/genética , Secuenciación Completa del Genoma
10.
BMC Genomics ; 23(1): 148, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183128

RESUMEN

BACKGROUND: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. RESULTS: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10- 7). CONCLUSIONS: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicina de Precisión , Presión Sanguínea/genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
11.
PLoS Genet ; 15(12): e1008500, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869403

RESUMEN

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Medicina de Precisión/métodos , Secuenciación Completa del Genoma/métodos , Globinas beta/genética , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Estados Unidos
12.
Stroke ; 52(8): 2594-2600, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34000829

RESUMEN

Background and Purpose: We aim to determine, in healthy high-risk adults, the association between subclinical coronary artery disease and white matter hyperintensity (WMH) volume and location, independent of atherosclerotic risk factors. Methods: Seven hundred eighty-two asymptomatic first-degree relatives of index cases with early-onset coronary artery disease (<60 years old) from GeneSTAR (Genetic Study of Atherosclerosis Risk) with contemporaneous coronary computed tomography angiography and brain magnetic resonance imaging were analyzed. Multilevel mixed-effects linear regression models, accounting for family structure, evaluated the association of total WMH volume and 3 regions (deep WMH, periventricular WMH [PVWMH], or borderzone [cuff]) with markers of coronary artery disease. Separate models were created for total WMH, deep WMH, PVWMH, and cuff volumes, each, as dependent variables, across coronary computed tomography angiography variables, adjusted for covariates. Results: Mean age was 51 years ±10, with 58% women and 39% African American people. Participants with any coronary plaque had 52% larger WMH volumes than those without plaque (95% CI, 0.24­0.59). Per 1% greater coronary plaque volume, total WMH volumes were 0.07% larger (95% CI, 0.04­0.10). Every 1% higher total coronary plaque volume was associated with 5.03% larger deep WMH volume (95% CI, 4.67­5.38), 5.10% PVWMH larger volume (95% CI, 4.72­5.48), and 2.74% larger cuff volume (95% CI, 2.38­3.09) with differences in this association when comparing deep WMH to PVWMH (P interaction, 0.001) or cuff (P interaction, <0.001), respectively. Conclusions: In healthy, high-risk individuals, the presence and volume of coronary artery plaque are associated with larger WMH volumes, appearing the strongest for PVWMH. These findings in high-risk families suggest a disease relationship in 2 different vascular beds, beyond traditional risk factors, possibly due to genetic predisposition.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Encéfalo/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Sustancia Blanca/diagnóstico por imagen , Adulto , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
13.
Cerebrovasc Dis ; 50(1): 100-107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33279889

RESUMEN

INTRODUCTION: We have demonstrated that asymptomatic cerebral small vessel disease (cSVD) measured by white matter hyperintensity volume is associated with reduced manipulative manual dexterity on the Grooved Peg Board Test (GPBT) in middle-aged healthy individuals with a family history of early coronary artery disease. In this current study, we aim to identify the association of subcortical white matter microstructural impairment measured by diffusion tensor imaging, manual dexterity measured by GPBT and circulating serums ceramide, another marker for white matter injury. We hypothesize that lower regional fractional anisotropy (rFA) is associated with worse performance on GPBT and elevated serum ceramides in the same study population. METHODS: rFA of 48 regions representing the subcortical white matters were analyzed in GeneSTAR participants in addition to serum ceramides and GPBT scores. Unadjusted univariable analyses with Bonferroni correction for multiple comparisons were completed using Spearman correlation for testing the associations between ceramides, rFA of subcortical white matter, and GPBT performance. Subsequently, sensitivity analyses were performed after excluding the participants that had any physical limitation that may influence their performance on GPBT. Finally, in the adjusted analysis using generalized estimating equation, linear regression models were performed for the areas that met significance threshold in the unadjusted analyses. RESULTS: 112 subjects (age [49 ± 11], 51% female, 39.3% African American) were included. Adjusted analyses for the significant correlations that met the Bonferroni correction threshold in the unadjusted univariable analyses identified significant negative associations between rFA of the right fornix (RF) and log-GPBT score (ß = -0.497, p = 0.037). In addition, rFA of RF negatively correlated with log serum ceramide levels (C18: ß = -0.03, p = 0.003, C20: ß = -0.0002, p = 0.004) and rFA of left genu of corpus callosum negatively correlated with log C18 level (ß = -0.0103, p = 0.027). CONCLUSIONS: These results demonstrate that subcortical microstructural white matter disruption is associated with elevated serum ceramides and reduced manual dexterity in a population with cSVD. These findings suggest that injury to white matter tracts undermines neural networks, with functional consequences in a middle-aged population with cardiovascular risk factors.


Asunto(s)
Ceramidas/sangre , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Cognición , Imagen de Difusión Tensora , Leucoencefalopatías/diagnóstico , Actividad Motora , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Biomarcadores/sangre , Enfermedades de los Pequeños Vasos Cerebrales/sangre , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Estudios Transversales , Femenino , Humanos , Leucoencefalopatías/sangre , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/psicología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Regulación hacia Arriba , Sustancia Blanca/fisiopatología
14.
Hum Genet ; 138(2): 199-210, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30671673

RESUMEN

In this study, we investigated low-frequency and rare variants associated with blood pressure (BP) by focusing on a linkage region on chromosome 16p13. We used whole genome sequencing (WGS) data obtained through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program on 395 Cleveland Family Study (CFS) European Americans (CFS-EA). By analyzing functional coding variants and non-coding rare variants with CADD score > 10 residing within the chromosomal region in families with linkage evidence, we observed 25 genes with nominal statistical evidence (burden or SKAT p < 0.05). One of the genes is RBFOX1, an evolutionarily conserved RNA-binding protein that regulates tissue-specific alternative splicing that we previously reported to be associated with BP using exome array data in CFS. After follow-up analysis of the 25 genes in ten independent TOPMed studies with individuals of European, African, and East Asian ancestry, and Hispanics (N = 29,988), we identified variants in SLX4 (p = 2.19 × 10-4) to be significantly associated with BP traits when accounting for multiple testing. We also replicated the associations previously reported for RBFOX1 (p = 0.007). Follow-up analysis with GTEx eQTL data shows SLX4 variants are associated with gene expression in coronary artery, multiple brain tissues, and right atrial appendage of the heart. Our study demonstrates that linkage analysis of family data can provide an efficient approach for detecting rare variants associated with complex traits in WGS data.


Asunto(s)
Presión Sanguínea/genética , Cromosomas Humanos Par 16/genética , Exoma , Ligamiento Genético , Variación Genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Empalme Alternativo/genética , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Factores de Empalme de ARN/genética , Recombinasas/genética
15.
Am J Hum Genet ; 99(1): 40-55, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27346686

RESUMEN

Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.


Asunto(s)
Plaquetas/metabolismo , Exoma/genética , Variación Genética/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Volúmen Plaquetario Medio , Recuento de Plaquetas
16.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27346685

RESUMEN

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Asunto(s)
Eritrocitos/citología , Eritropoyesis/genética , Exoma/genética , Pleiotropía Genética , Variación Genética/genética , Genotipo , Negro o Afroamericano/genética , Desequilibrio Alélico , Índices de Eritrocitos , Eritrocitos/metabolismo , Frecuencia de los Genes , Hematócrito , Hemoglobinas/genética , Humanos , Sitios de Carácter Cuantitativo/genética
17.
Am J Hum Genet ; 99(1): 22-39, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27346689

RESUMEN

White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of âˆ¼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.


Asunto(s)
Exoma/genética , Sitios Genéticos/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune/genética , Leucocitos/citología , Recuento de Células Sanguíneas , Humanos , Control de Calidad
19.
Am J Hum Genet ; 99(2): 481-8, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27486782

RESUMEN

Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis.


Asunto(s)
Empalme Alternativo/genética , Análisis Mutacional de ADN , Exoma/genética , Sitios Genéticos/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Plaquetas/citología , Sistemas CRISPR-Cas , Edición Génica , Células Madre Hematopoyéticas/citología , Humanos , Megacariocitos/citología , Recuento de Plaquetas
20.
Platelets ; 30(3): 380-386, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29553866

RESUMEN

Coronary artery disease (CAD) remains a major cause of mortality and morbidity worldwide. The aggregation of activated platelets on a ruptured atherosclerotic plaque is a critical step in most acute cardiovascular events like myocardial infarction. Platelet aggregation both at baseline and after aspirin is highly heritable. Genome-wide association studies (GWAS) have identified a common variant within the first intron of the platelet endothelial aggregation receptor1 (PEAR1), to be robustly associated with platelet aggregation. In this study, we used targeted deep sequencing to fine-map the prior GWAS peak and identify additional rare variants of PEAR1 that account for missing heritability in platelet aggregation within the GeneSTAR families. In this study, 1709 subjects (1043 European Americans, EA and 666 African Americans, AA) from families in the GeneSTAR study were included. In vitro platelet aggregation in response to collagen, ADP and epinephrine was measured at baseline and 14 days after aspirin therapy (81 mg/day). Targeted deep sequencing of PEAR1 in addition to 2kb of upstream and downstream of the gene was performed. Under an additive genetic model, the association of single variants of PEAR1 with platelet aggregation phenotypes were examined. Additionally, we examined the association between the burden of PEAR1 rare non-synonymous variants and platelet aggregation phenotypes. Of 532 variants identified through sequencing, the intron 1 variant, rs12041331, was significantly associated with all platelet aggregation phenotypes at baseline and after platelet inhibition with aspirin therapy. rs12566888, which is in linkage disequilibrium with rs12041331, was associated with platelet aggregation phenotypes but to a lesser extent. In the EA families, the burden of PEAR1 missense variants was associated with platelet aggregation after aspirin therapy when the platelets were stimulated with epinephrine (p = 0.0009) and collagen (p = 0.03). In AAs, the burden of PEAR1 missense variants was associated, to a lesser degree, with platelet aggregation in response to epinephrine (p = 0.02) and ADP (p = 0.04). Our study confirmed that the GWAS-identified variant, rs12041331, is the strongest variant associated with platelet aggregation both at baseline and after aspirin therapy in our GeneSTAR families in both races. We identified additional association of rare missense variants in PEAR1 with platelet aggregation following aspirin therapy. However, we observed a racial difference in the contribution of these rare variants to the platelet aggregation, most likely due to higher residual missing heritability of platelet aggregation after accounting for rs12041331 in the EAs compared to AAs.


Asunto(s)
Agregación Plaquetaria/inmunología , Pruebas de Función Plaquetaria/métodos , Receptores de Superficie Celular/inmunología , Negro o Afroamericano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA