Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 10362, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365210

RESUMEN

Spiral drawings on paper are used as routine measures in hospitals to assess Parkinson's Disease motor deficiencies. In the age of emerging mobile health tools and Artificial Intelligence a comprehensive digital setup enables granular biomarker analyses and improved differential diagnoses in movement disorders. This study aims to evaluate on discriminatory features among Parkison's Disease patients, healthy subjects and diverse movement disorders. Overall, 24 Parkinson's Disease patients, 27 healthy controls and 26 patients with similar differential diagnoses were assessed with a novel tablet-based system. It utilizes an integrative assessment by combining a structured symptoms questionnaire-the Parkinson's Disease Non-Motor Scale-and 2-handed spiral drawing captured on a tablet device. Three different classification tasks were evaluated: Parkinson's Disease patients versus healthy control group (Task 1), all Movement disorders versus healthy control group (Task 2) and Parkinson's Disease patients versus diverse other movement disorder patients (Task 3). To systematically study feature importances of digital biomarkers a Machine Learning classifier is cross-validated and interpreted with SHapley Additive exPlanations (SHAP) values. The number of non-motor symptoms differed significantly for Tasks 1 and 2 but not for Task 3. The proposed drawing features partially differed significantly for all three tasks. The diagnostic accuracy was on average 94.0% in Task 1, 89.4% in Task 2, and 72% in Task 3. While the accuracy in Task 3 only using the symptom questionnaire was close to the baseline, it greatly improved when including the tablet-based features from 60 to 72%. The accuracies for all three tasks were significantly improved by integrating the two modalities. These results show that tablet-based drawing features can not only be captured by consumer grade devices, but also capture specific features to Parkinson's Disease that significantly improve the diagnostic accuracy compared to the symptom questionnaire. Therefore, the proposed system provides an objective type of disease characterization of movement disorders, which could be utilized for home-based assessments as well.Clinicaltrials.gov Study-ID: NCT03638479.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Inteligencia Artificial , Estudios Prospectivos , Mano , Extremidad Superior , Movimiento
3.
Sci Adv ; 9(42): eadi9127, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862413

RESUMEN

We present an adaptive optical neural network based on a large-scale event-driven architecture. In addition to changing the synaptic weights (synaptic plasticity), the optical neural network's structure can also be reconfigured enabling various functionalities (structural plasticity). Key building blocks are wavelength-addressable artificial neurons with embedded phase-change materials that implement nonlinear activation functions and nonvolatile memory. Using multimode focusing, the activation function features both excitatory and inhibitory responses and shows a reversible switching contrast of 3.2 decibels. We train the neural network to distinguish between English and German text samples via an evolutionary algorithm. We investigate both the synaptic and structural plasticity during the training process. On the basis of this concept, we realize a large-scale network consisting of 736 subnetworks with 16 phase-change material neurons each. Overall, 8398 neurons are functional, highlighting the scalability of the photonic architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA