Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 52(16): 9996-10004, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39077947

RESUMEN

Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications. Previous TALEDs with inducible non-covalent dimerization showed detectable, but limited, DNA loop-based repression due to the repressor protein dimerization equilibrium. Here, we show robust DNA loop-dependent bacterial promoter repression by covalent TALEDs and verify that DNA looping dramatically enhances promoter repression in E. coli. We characterize repression using a thermodynamic model that quantitates this favorable contribution of DNA looping. This analysis unequivocally and quantitatively demonstrates that optimized TALED proteins can drive loop-dependent promoter repression in E. coli comparable to the natural LacI repressor system. This work elucidates key design principles that set the stage for wide application of TALED-dependent DNA loop-based repression of target genes.


Asunto(s)
Escherichia coli , Regulación Bacteriana de la Expresión Génica , Represoras Lac , Regiones Promotoras Genéticas , Represoras Lac/metabolismo , Represoras Lac/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Operón Lac , Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Ingeniería de Proteínas/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Multimerización de Proteína , Conformación de Ácido Nucleico , ADN/metabolismo , ADN/genética , ADN/química , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Termodinámica
2.
Nucleic Acids Res ; 49(18): 10382-10396, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478548

RESUMEN

Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón Lac , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica
3.
Anal Biochem ; 650: 114712, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561815

RESUMEN

The quantitative polymerase chain reaction (qPCR) with detection of duplex DNA yield by intercalator fluorescence is a common and essential technique in nucleic acid analysis. We encountered unexpected results when applying standard qPCR methods to the quantitation of random DNA libraries flanked by regions of fixed sequence, a configuration essential for in vitro selection experiments. Here we describe the results of experiments revealing why conventional qPCR methods can fail to allow automated analysis in such cases, and simple solutions to this problem. In particular we show that renaturation of PCR products containing random regions is incomplete in late PCR cycles when extension fails due to reagent depletion. Intercalator fluorescence can then be lost at standard interrogation temperatures. We show that qPCR analysis of random DNA libraries can be achieved simply by adjusting the step at which intercalator fluorescence is monitored so that the yield of annealed constant regions is detected rather than the yield of full duplex DNA products.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/genética , ADN/análisis , ADN/genética , Biblioteca de Genes , Sustancias Intercalantes , Reacción en Cadena de la Polimerasa/métodos
4.
Nucleic Acids Res ; 47(6): 2871-2883, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698746

RESUMEN

The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are 'captured' by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a-DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 µs-1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.


Asunto(s)
ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas HMGN/química , Proteínas HMGN/metabolismo , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina/genética , Transferencia Resonante de Energía de Fluorescencia , Proteínas HMGN/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
5.
Biophys J ; 119(10): 2045-2054, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33091377

RESUMEN

Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins. Because TALE monomers bind the idealized symmetrical lac operator sequence in two orientations, our prior studies detected repression due to multiple DNA loops. We now quantitatively characterize gene repression in living E. coli by a collection of individual TALED loops with systematic loop length variation. Fitting of a thermodynamic model allows unequivocal demonstration of looping and comparison of the engineered TALED repression system with the natural lac repressor system.


Asunto(s)
Proteínas de Escherichia coli , Efectores Tipo Activadores de la Transcripción , ADN Bacteriano , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón Lac/genética , Represoras Lac/genética , Represoras Lac/metabolismo , Conformación de Ácido Nucleico
6.
Nucleic Acids Res ; 46(5): 2690-2696, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29390154

RESUMEN

Genetic switches must alternate between states whose probabilities are dependent on regulatory signals. Classical examples of transcriptional control in bacteria depend on repressive DNA loops anchored by proteins whose structures are sensitive to small molecule inducers or co-repressors. We are interested in exploiting these natural principles to engineer artificial switches for transcriptional control of bacterial genes. Here, we implement designed homodimeric DNA looping proteins ('Transcription Activator-Like Effector Dimers'; TALEDs) for this purpose in living bacteria. Using well-studied FKBP dimerization domains, we build switches that mimic regulatory characteristics of classical Escherichia coli lactose, galactose and tryptophan operon promoters, including induction or co-repression by small molecules. Engineered DNA looping using TALEDs is thus a new approach to tuning gene expression in bacteria. Similar principles may also be applicable for gene control in eukaryotes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Efectores Tipo Activadores de la Transcripción/genética , ADN/química , Proteínas de Escherichia coli/metabolismo , Operón Lac , Represoras Lac/metabolismo , Modelos Genéticos , Ingeniería de Proteínas , Multimerización de Proteína , Efectores Tipo Activadores de la Transcripción/química , Efectores Tipo Activadores de la Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(23): 7177-82, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26039992

RESUMEN

Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.


Asunto(s)
ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas HMGN/metabolismo , Represoras Lac/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , ADN Bacteriano/química , Proteínas HMGN/química , Represoras Lac/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química
8.
Nucleic Acids Res ; 42(9): 5495-504, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598256

RESUMEN

The Escherichia coli lactose operon provides a paradigm for understanding gene control by DNA looping where the lac repressor (LacI) protein competes with RNA polymerase for DNA binding. Not all promoter loops involve direct competition between repressor and RNA polymerase. This raises the possibility that positioning a promoter within a tightly constrained DNA loop is repressive per se, an idea that has previously only been considered in vitro. Here, we engineer living E. coli bacteria to measure repression due to promoter positioning within such a tightly constrained DNA loop in the absence of protein-protein binding competition. We show that promoters held within such DNA loops are repressed ∼100-fold, with up to an additional ∼10-fold repression (∼1000-fold total) dependent on topological positioning of the promoter on the inner or outer face of the DNA loop. Chromatin immunoprecipitation data suggest that repression involves inhibition of both RNA polymerase initiation and elongation. These in vivo results show that gene repression can result from tightly looping promoter DNA even in the absence of direct competition between repressor and RNA polymerase binding.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón Lac , Regiones Promotoras Genéticas , Unión Competitiva , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Silenciador del Gen , Genes Reporteros , Represoras Lac/genética , Represoras Lac/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
9.
Nucleic Acids Res ; 41(1): 156-66, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23143103

RESUMEN

The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.


Asunto(s)
ADN Bacteriano/química , Regulación Bacteriana de la Expresión Génica , Represoras Lac/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Genéticos , Regiones Operadoras Genéticas
10.
Nucleic Acids Res ; 40(21): 11139-54, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965134

RESUMEN

LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as 'linkers' to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synthetic protein family, which was created by joining the LacI DNA-binding domain/linker to seven additional regulatory domains. Despite 'mismatched' interfaces, chimeras maintained allosteric response to their cognate effectors. Therefore, allostery in many LacI/GalR proteins does not require interfaces with precisely matched interactions. Nevertheless, the chimeric interfaces were not silent to mutagenesis, and preliminary comparisons suggest that the chimeras provide an ideal context for systematically exploring functional contributions of non-conserved positions. DNA looping experiments revealed higher order (dimer-dimer) oligomerization in several chimeras, which might be possible for the natural paralogs. Finally, the biological significance of repression differences was determined by measuring bacterial growth rates on lactose minimal media. Unexpectedly, moderate and strong repressors showed an apparent induction phase, even though inducers were not provided; therefore, an unknown mechanism might contribute to regulation of the lac operon. Nevertheless, altered growth correlated with altered repression, which indicates that observed functional modifications are significant.


Asunto(s)
Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Represoras Lac/química , Proteínas Represoras/química , Transcripción Genética , Regulación Alostérica , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Operón Lac , Represoras Lac/genética , Represoras Lac/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Regulación hacia Arriba
11.
Methods Mol Biol ; 2819: 103-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028504

RESUMEN

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as in regulation of the Escherichia coli lactose (lac) operon. Here we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example, we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.


Asunto(s)
Inmunoprecipitación de Cromatina , ADN Bacteriano , Escherichia coli , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunoprecipitación de Cromatina/métodos , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Operón Lac , Reacción en Cadena de la Polimerasa/métodos , Southern Blotting , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo
12.
Nat Commun ; 14(1): 4671, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537199

RESUMEN

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and ß-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. ß-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals ß-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.


Asunto(s)
Neoplasias de la Próstata , Regulador Transcripcional ERG , Proteína p53 Supresora de Tumor , Animales , Humanos , Masculino , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Mutación con Ganancia de Función , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proto-Oncogenes , Pirimidinas/biosíntesis , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Nucleic Acids Res ; 38(22): 8072-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21149272

RESUMEN

The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.


Asunto(s)
ADN Bacteriano/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón Lac , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Represoras Lac/metabolismo , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas
14.
Nucleic Acids Res ; 36(12): 4009-21, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18515834

RESUMEN

DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas HMGB/química , Proteínas Nucleares/química , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Secuencia de Bases , ADN/química , Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteína HMGB2/química , Proteína HMGB2/genética , Proteínas HMGN , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Regiones Operadoras Genéticas , Fenotipo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
15.
Biochemistry ; 48(10): 2125-34, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19236006

RESUMEN

HMGB proteins are abundant non-histone components of eukaryotic chromatin. The biological function of DNA sequence-nonspecific HMGB proteins is obscure. These proteins are composed of one or two conserved HMG box domains, each forming three alpha-helices that fold into a sequence-nonspecific DNA-binding module recognizing the DNA minor groove. Box A and box B homology domains have subtle sequence differences such that box B domains bend DNA strongly while DNA bending by isolated box A domains is weaker. Both box A and box B domains preferentially bind to distorted DNA structures. Here we show using DNA cyclization kinetics assays in vitro and Escherichia coli DNA looping assays in vivo that an isolated HMG box A domain derived from human HMGB2 folds poorly and does not enhance apparent DNA flexibility. Surprisingly, substitution of a small number of cationic residues from the N-terminal leader of a functional yeast box B protein, Nhp6Ap, confers the ability to enhance DNA flexibility. These results demonstrate important roles for cationic leader amino acids in HMGB folding, DNA interaction, and DNA bending.


Asunto(s)
ADN/química , Dominios HMG-Box/fisiología , Proteínas HMGB/química , Conformación de Ácido Nucleico , Dicroismo Circular , ADN/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Polarización de Fluorescencia , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteína HMGB2/química , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Proteínas HMGN/química , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Operón Lac/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Señales de Clasificación de Proteína/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nucleic Acids Res ; 35(12): 3988-4000, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17553830

RESUMEN

The intrinsic stiffness of DNA limits its ability to be bent and twisted over short lengths, but such deformations are required for gene regulation. One classic paradigm is DNA looping in the regulation of the Escherichia coli lac operon. Lac repressor protein binds simultaneously to two operator sequences flanking the lac promoter. Analysis of the length dependence of looping-dependent repression of the lac operon provides insight into DNA deformation energetics within cells. The apparent flexibility of DNA is greater in vivo than in vitro, possibly because of host proteins that bind DNA and induce sites of flexure. Here we test DNA looping in bacterial strains lacking the nucleoid proteins HU, IHF or H-NS. We confirm that deletion of HU inhibits looping and that quantitative modeling suggests residual looping in the induced operon. Deletion of IHF has little effect. Remarkably, DNA looping is strongly enhanced in the absence of H-NS, and an explanatory model is proposed. Chloroquine titration, psoralen crosslinking and supercoiling-sensitive reporter assays show that the effects of nucleoid proteins on looping are not correlated with their effects on either total or unrestrained supercoiling. These results suggest that host nucleoid proteins can directly facilitate or inhibit DNA looping in bacteria.


Asunto(s)
ADN Bacteriano/química , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/genética , Operón Lac , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ADN Superhelicoidal/química , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/fisiología , Modelos Genéticos , Conformación de Ácido Nucleico
17.
Int J Biochem Mol Biol ; 10(3): 32-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31523479

RESUMEN

Repression of a promoter by entrapment within a tightly bent DNA loop is a common mechanism of gene regulation in bacteria. Besides the mechanical properties of the looped DNA and affinity of the protein that anchors the loop, cellular energetics and DNA negative supercoiling are likely factors determining the stability of the repression loop. E. coli cells undergo numerous highly regulated and dynamic transitions as resources are depleted during bacterial growth. We hypothesized that the probability of DNA looping depends on the growth status of the E. coli culture. We utilized a well-characterized repression loop model assembled from elements of the lac operon to measure loop length-dependent repression at three different culture densities. Remarkably, even with changes in supercoiling, there exists a dynamic compensation in which the contribution of DNA looping to gene repression remains essentially constant.

18.
Biochem Biophys Res Commun ; 366(2): 420-5, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18068116

RESUMEN

Immobilization of divalent Nickel cations provides a tool for affinity purification of proteins containing hexahistidine tags. During experiments to generate single-stranded DNA aptamers to immobilized proteins we inadvertently identified DNA sequences with affinity for Nickel-nitrilotriacetic acid (Ni(2+)-NTA) magnetic beads. Analysis of these aptamers revealed that affinity for the Ni(2+)-NTA support requires only single-stranded sequences with multiple adenosine residues. Bound nucleic acids can be eluted with imidazole. A single-stranded dA(20) affinity tag (but not other homopolymer sequences) is sufficient for immobilization of double-stranded DNA PCR products on Ni(2+)-NTA magnetic beads. Addition of an rA(20) sequence to an RNA transcript allowed its affinity capture on Ni(2+)-NTA magnetic beads, suggesting an approach for purification of poly(A) mRNA.


Asunto(s)
ADN/química , Níquel/química , ARN/química , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular
19.
Methods Mol Biol ; 1837: 95-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109607

RESUMEN

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as the Escherichia coli lactose (lac) operon. Here, we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Inmunoprecipitación de Cromatina , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Southern Blotting , Inmunoprecipitación de Cromatina/métodos , División del ADN , Exonucleasas/metabolismo , Reacción en Cadena de la Polimerasa
20.
J Mol Biol ; 349(4): 716-30, 2005 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-15893770

RESUMEN

The Escherichia coli lac operon provides a classic paradigm for understanding regulation of gene transcription. It is now appreciated that lac promoter repression involves cooperative binding of the bidentate lac repressor tetramer to pairs of lac operators via DNA looping. We have adapted components of this system to create an artificial assay of DNA flexibility in E.coli. This approach allows for systematic study of endogenous and exogenous proteins as architectural factors that enhance apparent DNA flexibility in vivo. We show that inducer binding does not completely remove repression loops but it does alter their geometries. Deletion of the E.coli HU protein drastically destabilizes small repression loops, an effect that can be partially overcome by expression of a heterologous mammalian HMG protein. These results emphasize that the inherent torsional inflexibility of DNA restrains looping and must be modulated in vivo.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Conformación de Ácido Nucleico , Animales , Secuencia de Bases , ADN Bacteriano/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Operón Lac/genética , Datos de Secuencia Molecular , Docilidad , Regiones Promotoras Genéticas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA