Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 22(23): 9470-9476, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36455210

RESUMEN

Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material's characteristics are affected by quantum confinement. Demonstrated here is a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier's kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Puntos Cuánticos/química , Nanopartículas/química , Semiconductores , Electrones , Electrónica
2.
Inorg Chem ; 60(6): 3677-3689, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33621069

RESUMEN

The ligand PHEHAT (PHEHAT = 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene) presents a structural asymmetry that has a dramatic influence on the photophysical properties depending on the chelation site of the metal ion in the linkage isomers. While [RuII(phen)2HATPHE]2+ behaves classically, like [RuII(bpy)3]2+, [RuII(phen)2PHEHAT]2+ exhibits an unusual behavior. It appears that this complex has two 3MLCT bright states, the lower one being weakly emissive or nonemissive depending on the solvent and temperature. Different photophysical techniques involving a wide range of various temperatures and timescales are essential to analyze this difference. A full photophysical scheme is proposed based on experimental data and density functional theory calculations. While previous studies focused on high temperatures and longer timescale emission, we explore the complexes at very low temperatures and very short times in order to obtain a more complete picture of the intriguing photophysical behavior of these complexes.

3.
Phys Chem Chem Phys ; 24(1): 568-577, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34904984

RESUMEN

The radical anion of 9,10-dicyanoanthracene (DCA) has been suggested to be a promising chromophore for photoredox chemistry, due to its nanosecond excited-state lifetime determined from indirect measurements. Here, we investigate the excited-state dynamics of the radical anion of three cyanoanthracenes, including DCA˙-, produced by photoinduced electron transfer in liquid using both pump-probe and pump-pump probe transient electronic absorption spectroscopy. All three excited radical ions are characterised by a 3-5 ps lifetime, due to efficient non-radiative deactivation to the ground state. The decay pathway most probably involves D1/D0 conical intersection(s), whose presence is favoured by the enhanced flexibility of the radical anions relative to their neutral counterparts. The origin of the discrepancy with the nanosecond lifetime of DCA˙-* reported previously is discussed. These very short lifetimes limit, but do not preclude, photochemical applications of the cyanoanthracene anions.

4.
J Chem Phys ; 155(14): 144110, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34654316

RESUMEN

Determining the 3D orientation of a single molecule or particle, encoded in its polar and azimuthal angles, is of interest for a variety of fields, being relevant to a range of questions in elementary chemical reactivity, biomolecular motors, and nanorheology. A popular experimental method, known as division-of-amplitude polarimetry, for determining the real-time orientation of a single particle is to split the emitted/scattered light into multiple polarizations and to measure the light intensity using point detectors at these polarizations during a time interval Δt. Here, we derive the Cramér-Rao lower bounds for this method from the perspective of information theory in the cases of utilizing a chromophore or a scattering particle as a 3D orientation probe. Such Cramér-Rao lower bounds are new for using this experimental method to measure the full 3D orientation in both the scattering case and the fluorescence case. These results show that, for a scatterer, the information content of one photon is 1.16 deg-2 in the polar and 58.71 deg-2 in the azimuthal angles, respectively. For a chromophore, the information content of one photon is 2.54 deg-2 in the polar and 80.29 deg-2 in the azimuthal angles. In addition, the Cramér-Rao lower bound scales with the square root of the total signal photons. To determine orientation to an uncertainty of one degree requires 7.40 × 104 and 2.34 × 103 photons for the polar and the azimuthal angles, respectively, for fluorescence, whereas it takes 1.62 × 105 and 3.20 × 103 photons for scattering. This work provides experimentalists new guidelines by which future experiments can be designed and interpreted.

5.
J Chem Phys ; 155(16): 164201, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34717352

RESUMEN

A microscopy platform that leverages the arrival time of individual photons to enable 3D single-particle tracking of fast-moving (translational diffusion coefficient of ≃3.3 µm2/s) particles in high-background environments is reported here. It combines a hardware-based time-gating module, which enables the rate of photon processing to be as high as 100 MHz, with a two-photon-excited 3D single-particle tracking confocal microscope to enable high sample penetration depth. Proof-of-principle experiments where single quantum dots are tracked in solutions containing dye-stained cellulose, are shown with tracking performance markedly improved using the hardware-based time-gating module. Such a microscope design is anticipated to be of use to a variety of communities who wish to track single particles in cellular environments, which commonly have high fluorescence and scattering background.

6.
Chimia (Aarau) ; 75(10): 856-861, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34728012

RESUMEN

Thomas Bally has acquired international recognition for his work on the photochemistry of reactive intermediates, which include radical ions. Here, we present a brief overview of our investigations of the excited-state dynamics of radical ions in liquids at room temperature, which are still poorly documented. A better understanding of these dynamics is most relevant, as open-shell ions in the excited state are being increasingly used in redox photochemistry and have been proposed to play a key role in highly exergonic photoinduced electron transfer reactions.


Asunto(s)
Electrones , Transporte de Electrón , Iones , Oxidación-Reducción , Fotoquímica
7.
Phys Chem Chem Phys ; 20(14): 9328-9336, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29564467

RESUMEN

A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.

8.
Phys Chem Chem Phys ; 20(10): 7254-7264, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29484322

RESUMEN

The excited-state dynamics of the push-pull azobenzene Methyl Orange (MO) were investigated in several solvents and water/glycerol mixtures using a combination of ultrafast time-resolved fluorescence and transient absorption in both the UV-visible and the IR regions, as well as quantum chemical calculations. Optical excitation of MO in its trans form results in the population of the S2 ππ* state and is followed by internal conversion to the S1 nπ* state in ∼50 fs. The population of this state decays on the sub-picosecond timescale by both internal conversion to the trans ground state and isomerisation to the cis ground state. Finally, the cis form converts thermally to the trans form on a timescale ranging from less than 50 ms to several minutes. Significant differences depending on the hydrogen-bond donor strength of the solvents, quantified by the Kamlet Taft parameter α, were observed: compared to the other solvents, in highly protic solvents (α > 1), (i) the viscosity dependence of the S1 state lifetime is less pronounced, (ii) the S1 state lifetime is shorter by a factor of ≈1.5 for the same viscosity, (iii) the trans-to-cis photoisomerisation efficiency is smaller, and (iv) the thermal cis-to-trans isomerisation is faster by a factor of ≥103. These differences are explained in terms of hydrogen-bond interactions between the solvent and the azo nitrogen atoms of MO, which not only change the nature of the S1 state but also have an impact on the shape of ground- and excited-state potentials, and, thus, affect the deactivation pathways from the excited state.

9.
Nat Commun ; 15(1): 1940, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431671

RESUMEN

Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax. We demonstrate this optical robustness experimentally with high accuracy ( > 99.2 ± 0.1%, 0.1 locs µm-2) and sensitivity ( > 86.6 ± 0.9%, 0.1 locs µm-2) through whole-cell (scan-free) imaging and tracking of single membrane proteins in live primary B cells. We also exemplify high-density volumetric imaging (0.15 locs µm-2) in dense cytosolic tubulin datasets.


Asunto(s)
Imagenología Tridimensional , Microscopía , Microscopía/métodos , Imagenología Tridimensional/métodos , Imagen Individual de Molécula/métodos , Nanotecnología
10.
J Phys Chem B ; 128(15): 3585-3597, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38593280

RESUMEN

Super-resolution and single-molecule microscopies have been increasingly applied to complex biological systems. A major challenge of these approaches is that fluorescent puncta must be detected in the low signal, high noise, heterogeneous background environments of cells and tissue. We present RASP, Radiality Analysis of Single Puncta, a bioimaging-segmentation method that solves this problem. RASP removes false-positive puncta that other analysis methods detect and detects features over a broad range of spatial scales: from single proteins to complex cell phenotypes. RASP outperforms the state-of-the-art methods in precision and speed using image gradients to separate Gaussian-shaped objects from the background. We demonstrate RASP's power by showing that it can extract spatial correlations between microglia, neurons, and α-synuclein oligomers in the human brain. This sensitive, computationally efficient approach enables fluorescent puncta and cellular features to be distinguished in cellular and tissue environments, with sensitivity down to the level of the single protein. Python and MATLAB codes, enabling users to perform this RASP analysis on their own data, are provided as Supporting Information and links to third-party repositories.


Asunto(s)
Encéfalo , Humanos
11.
Chem Mater ; 34(7): 3042-3052, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35431440

RESUMEN

A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.

12.
J Phys Chem B ; 125(49): 13436-13443, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34851653

RESUMEN

This paper presents a new experiment with which we are able to measure the 3D translational motion of a single particle at 10 µs time resolution and with ∼10 nm spatial resolution while at the same time determining the 3D orientation of the same single particle with 250 µs time resolution. These high time resolutions are ∼40 times greater than previous simultaneous measurements of 3D position and 3D orientation. Detailed numerical simulations and experiments are used to demonstrate that the technique can measure 3D orientation at the shot-noise limit. The microscope is also able to simultaneously measure the length or width (with the other assumed) of the plasmonic nanorods used here in situ and nondestructively, which should yield a greater understanding of the underlying dynamics. This technique should be applicable to a broad range of problems where environments which change in space and time may perturb physical and chemical dynamics.


Asunto(s)
Nanotubos , Microscopía
13.
J Phys Chem Lett ; 10(13): 3688-3693, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31194559

RESUMEN

The excited-state dynamics of the radical anion of perylene (Pe) generated upon bimolecular photoinduced electron transfer (PET) with a donor was investigated using broadband pump-pump-probe spectroscopy. It was found to depend on the age of the anion, that is, on the time interval between the first pump pulse that triggers PET and the second one that excites the ensuing Pe anion (Pe•-). These differences, observed in acetonitrile but not in tetrahydrofuran, report on the evolution of the PET product from an ion pair to free ions. Two photoinduced charge recombination pathways of the ion pair to the neutral Pe*(S1) + donor state were identified: one occurring in a few picoseconds from Pe•-*(D1) and one taking place within 100-200 fs from Pe•-*(D n>1). Both processes are sensitive to the interionic distance over different length scales and thus serve as molecular rulers.

14.
J Phys Chem Lett ; 8(23): 5878-5883, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29144140

RESUMEN

Most quadrupolar molecules designed for large two-photon absorption cross section have been shown to undergo symmetry breaking upon excitation to the S1 state. This was originally deduced from their strong fluorescence solvatochromism and later visualized in real time using transient infrared spectroscopy. For molecules not containing clear IR marker modes, however, a specific real-time observation of the symmetry breaking process remains lacking. Here we show that this process can be resolved using broadband fluorescence upconversion spectroscopy by monitoring the instantaneous emission transition dipole moment. This approach is illustrated with measurements performed on two quadrupolar molecules, with only one of them undergoing excited-state symmetry breaking in polar solvents.

15.
ACS Chem Neurosci ; 7(3): 399-406, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26800462

RESUMEN

The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-ß. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson's disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders.


Asunto(s)
Proteínas Amiloidogénicas/líquido cefalorraquídeo , Diagnóstico por Imagen/métodos , Microscopía Fluorescente/métodos , Enfermedad de Parkinson/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Benzotiazoles , Dicroismo Circular/métodos , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica/métodos , Persona de Mediana Edad , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA