Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Chem ; 69(3): 251-261, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644914

RESUMEN

BACKGROUND: Medical results generated by European CE Marking for In Vitro Diagnostic or in-house tests should be traceable to higher order reference measurement systems (RMS), such as International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)-endorsed reference measurement procedures (RMPs) and reference materials. Currently, serum apolipoprotein (a) [apo(a)] is recognized as a novel risk factor for cardiovascular risk assessment and patient management. The former RMS for serum apo(a) is no longer available; consequently, an International System of Units (SI)-traceable, ideally multiplexed, and sustainable RMS for apo(a) is needed. METHODS: A mass spectrometry (MS)-based candidate RMP (cRMP) for apo(a) was developed using quantitative bottom-up proteomics targeting 3 proteotypic peptides. The method was provisionally validated according to ISO 15193 using a single human serum based calibrator traceable to the former WHO-IFCC RMS. RESULTS: The quantitation of serum apo(a) was by design independent of its size polymorphism, was linear from 3.8 to 456 nmol/L, and had a lower limit of quantitation for apo(a) of 3.8 nmol/L using peptide LFLEPTQADIALLK. Interpeptide agreement showed Pearson Rs of 0.987 and 0.984 for peptides GISSTVTGR and TPENYPNAGLTR, and method comparison indicated good correspondence (slopes 0.977, 1.033, and 1.085 for LFLEPTQADIALLK, GISSTVTGR, and TPENYPNAGLTR). Average within-laboratory imprecision of the cRMP was 8.9%, 11.9%, and 12.8% for the 3 peptides. CONCLUSIONS: A robust, antibody-independent, MS-based cRMP was developed as higher order RMP and an essential part of the apo(a) traceability chain and future RMS. The cRMP fulfils predefined analytical performance specifications, making it a promising RMP candidate in an SI-traceable MS-based RMS for apo(a).


Asunto(s)
Péptidos , Suero , Humanos , Apoproteína(a) , Espectrometría de Masas , Estándares de Referencia , Calibración
2.
Clin Chem ; 67(3): 478-489, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33331636

RESUMEN

Current dyslipidemia management in patients with atherosclerotic cardiovascular disease (ASCVD) is based on traditional serum lipids. Yet, there is some indication from basic research that serum apolipoproteins A-I, (a), B, C-I, C-II, C-III, and E may give better pathophysiological insight into the root causes of dyslipidemia. To facilitate the future adoption of clinical serum apolipoprotein (apo) profiling for precision medicine, strategies for accurate testing should be developed in advance. Recent discoveries in basic science and translational medicine set the stage for the IFCC Working Group on Apolipoproteins by Mass Spectrometry. Main drivers were the convergence of unmet clinical needs in cardiovascular disease (CVD) patients with enabling technology and metrology. First, the residual cardiovascular risk after accounting for established risk factors demonstrates that the current lipid panel is too limited to capture the full complexity of lipid metabolism in patients. Second, there is a need for accurate test results in highly polymorphic and atherogenic apolipoproteins such as apo(a). Third, sufficient robustness of mass spectrometry technology allows reproducible protein quantification at the molecular level. Fourth, several calibration hierarchies in the revised ISO 17511:2020 guideline facilitate metrological traceability of test results, the highest achievable standard being traceability to SI. This article outlines the conceptual approach aimed at achieving a novel, multiplexed Reference Measurement System (RMS) for seven apolipoproteins based on isotope dilution mass spectrometry and peptide-based calibration. This RMS should enable standardization of existing and emerging apolipoprotein assays to SI, within allowable limits of measurement uncertainty, through a sustainable network of Reference Laboratories.


Asunto(s)
Apolipoproteínas/sangre , Enfermedades Cardiovasculares/diagnóstico , Dislipidemias/diagnóstico , Proteómica/métodos , Apolipoproteínas/normas , Enfermedades Cardiovasculares/complicaciones , Conducta Cooperativa , Dislipidemias/complicaciones , Humanos , Espectrometría de Masas/métodos , Estándares de Referencia
3.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048046

RESUMEN

BACKGROUND: Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS: A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS: Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION: By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.


Asunto(s)
Fitosteroles , Esteroles , Esteroles/metabolismo , Cromatografía Liquida , Microglía/metabolismo , Espectrometría de Masas en Tándem , Estigmasterol , Lanosterol , Membrana Celular/metabolismo
4.
Nutrients ; 14(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35745204

RESUMEN

Apolipoprotein E (apoE) occurs on the majority of plasma lipoproteins and plays a major role in the lipid metabolism in the periphery and in the central nervous system. ApoE is a polymorphic protein with three common isoforms, apoE2, apoE3 and apoE4, derived from respective alleles ε2, ε3 and ε4. The aim of this study was to develop a sample pretreatment protocol combined with rapid mass spectrometry (MS)-based assay for simultaneous apolipoprotein profiling and apoE phenotype identification. This assay was validated in 481 samples from patients with stable atherosclerotic cardiovascular disease (ASCVD) and applied to study association with mild cognitive impairment (MCI) in the LIFE Adult study, including overall 690 study subjects. Simultaneous quantification of 8−12 major apolipoproteins including apoA-I, apoB-100 and apoE could be performed within 6.5 min. Phenotyping determined with the developed MS assay had good agreement with the genotyping by real-time fluorescence PCR (97.5%). ApoE2 isoform was associated with the highest total apoE concentration compared to apoE3 and apoE4 (p < 0.001). In the subgroup of diabetic atherosclerotic cardiovascular disease (ASCVD) patients, apoE2 isoform was related to higher apoC-I levels (apoE2 vs. apoE3, p < 0.05), while in the subgroup of ASCVD patients under statin therapy apoE2 was related to lower apoB-100 levels (apoE2 vs. apoE3/apoE4, p < 0.05). A significant difference in apoE concentration observed between mild cognitive impairment (MCI) subjects and controls was confirmed for each apoE phenotype. In conclusion, this study provides evidence for the successful implementation of an MS-based apoE phenotyping assay, which can be used to assess phenotype effects on plasma lipid and apolipoprotein levels.


Asunto(s)
Enfermedades Cardiovasculares , Disfunción Cognitiva , Apolipoproteína B-100 , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Humanos , Espectrometría de Masas , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA