Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 4): 114700, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370814

RESUMEN

Globally, Methicillin-Resistant Staphylococcus aureus bacteraemia is one of the commonest bloodstream infections associated with clinical complications and high mortality. Thence, devising effective and targeted biogenic silver based strategies are in great demand. However, limited insights regarding the biosynthesis methodologies impedes the possible scale up and commercial potentials. We, hereby demonstrate the biosynthesis of Ag nanoparticles using the phytochemical agent extracted and purified from bulb extract of Urginea indica. The chemical structure of the phytochemical agent is investigated by various chromatographic and spectroscopic techniques and was found closely relatable to N-ethylacetamide. Ag nanoparticles synthesis by this agent was found to have a strong Surface Plasmon band at 402 nm. X-ray diffraction and transmission electron microscopy further validated the formation of Ag nanoparticles with face-centred cubic structure with a size range of 20-30 nm. The biogenic metal nanoparticles have shown potential antibacterial activity against S. aureus and MRSA (within a range of 10-50 µg/mL). The nanoparticles have also shown promising anti-biofim activity against the above mentioned strains. The nanoparticles were expected to induce ROS mediated bactericidal mechamism. Cell viability and in-vitro infection studies advocate noticeable biocompatibility and future clinical potential of the developed nanoparticles against Staphylococcus infections.


Asunto(s)
Bacteriemia , Drimia , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Fitoquímicos/farmacología
2.
Med Microbiol Immunol ; 208(5): 609-629, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30291475

RESUMEN

The aim of the present study is focused on the synthesis of Au@ZnO core-shell nanocomposites, where zinc oxide is overlaid on biogenic gold nanoparticles obtained from Hibiscus Sabdariffa plant extract. Optical property of nanocomposites is investigated using UV-visible spectroscopy and crystal structure has been determined using X-ray crystallography (XRD) technique. The presence of functional groups on the surface of Au@ZnO core-shell nanocomposites has been observed by Fourier transforms infrared (FTIR) spectroscopy. Electron microscopy studies revealed the morphology of the above core-shell nanocomposites. The synthesized nanocomposite material has shown antimicrobial and anti-biofilm activity against Staphylococcus aureus and Methicillin Resistant Staphylococcus haemolyticus (MRSH). The microbes are notorious cross contaminant and are known to cause infection in open wounds. The possible antimicrobial mechanism of as synthesized nanomaterials has been investigated against Staphylococcus aureus and obtained data suggests that the antimicrobial activity could be due to release of reactive oxygen species (ROS). Present study has revealed that surface varnishing of biosynthesized gold nanoparticles through zinc oxide has improved its antibacterial proficiency against Staphylococcus aureus, whereas reducing its toxic effect towards mouse fibroblast cells under normal and hyperglycaemic condition. Further studies have been performed in mice model to understand the wound healing efficiency of Au@ZnO nanocomposites. The results obtained suggest the possible and effective use of as synthesized core shell nanocomposites in wound healing.


Asunto(s)
Antibacterianos/administración & dosificación , Fibroblastos/efectos de los fármacos , Nanocompuestos/administración & dosificación , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/efectos adversos , Antibacterianos/aislamiento & purificación , Modelos Animales de Enfermedad , Oro/administración & dosificación , Oro/efectos adversos , Oro/aislamiento & purificación , Hibiscus/química , Ratones , Nanocompuestos/efectos adversos , Extractos Vegetales/química , Infecciones Estafilocócicas/prevención & control , Staphylococcus haemolyticus/efectos de los fármacos , Óxido de Zinc/administración & dosificación , Óxido de Zinc/efectos adversos , Óxido de Zinc/aislamiento & purificación
3.
ACS Omega ; 9(2): 2783-2794, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250361

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria has spurred the exploration of therapeutic nanomaterials such as ZnO nanoparticles. However, the inherent nonspecific toxicity of ZnO has posed a significant obstacle to their clinical utilization. In this research, we propose a novel approach to improve the selectivity of the toxicity of ZnO nanoparticles by impregnating them onto a less toxic clay mineral, Bentonite, resulting in ZB nanocomposites (ZB NCs). We hypothesize that these ZB NCs not only reduce toxicity toward both normal and carcinogenic cell lines but also retain the antibacterial properties of pure ZnO nanoparticles. To test this hypothesis, we synthesized ZB NCs by using a precipitation technique and confirmed their structural characteristics through X-ray diffraction and Raman spectroscopy. Electron microscopy revealed composite particles in the size range of 20-50 nm. The BET surface area of ZB NCs, within a relative pressure (P/P0) range of 0.407-0.985, was estimated to be 31.182 m2/g. Notably, 50 mg/mL ZB NCs demonstrated biocompatibility with HCT 116 and HEK 293 cell lines, supported by flow cytometry and fluorescence microscopy analysis. In vitro experiments further confirmed a remarkable five-log reduction in the population of MDR Escherichia coli in the presence of 50 mg/mL of ZB NCs. Antibacterial activity of the nanocomposites was also validated in the HEK293 and HCT 116 cell lines. These findings substantiate our hypothesis and underscore the effectiveness of ZB NCs against MDR E. coli while minimizing nonspecific toxicity toward healthy cells.

5.
Biotechnol Genet Eng Rev ; : 1-24, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243587

RESUMEN

Staphylococcus aureus (S. aureus) has long been acknowledged as being one of the most harmful bacteria for human civilization. It is the main contributor to skin and soft tissue infections. The gram positive pathogen also contributes to bloodstream infections, pneumonia, or bone and joint infections. Hence, developing an efficient and targeted treatment for these illnesses is greatly desired. Recently, studies on nanocomposites (NCs) have significantly increased due to their potent antibacterial and antibiofilm properties. These NCs provide an intriguing way to control the growth of bacteria without causing the development of resistance strains that come from improper or excessive use of the conventional antibiotics. In this context, we have demonstrated the synthesis of a NC system by precipitation of ZnO nanoparticles (NPs) on Gypsum followed by encapsulation with Gelatine, in the present study. Fourier transform infrared (FTIR) spectroscopy was used to validate the presence of ZnO NPs and Gypsum. The film was characterized by X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The system exhibited promising antibiofilm action and was effective in combating S. aureus and MRSA in concentrations between 10 and 50 ug/ml. The bactericidal mechanism by release of reactive oxygen species (ROS) was anticipated to be induced by the NC system. Studies on cell survival and in-vitro infection support the film's notable biocompatibility and its potential for treating Staphylococcus infections in the future.

6.
Biotechnol Genet Eng Rev ; : 1-35, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576250

RESUMEN

Diabetes mellitus is a chronic endocrine disease that occurs mostly in the state of hyperglycemia (elevated blood glucose level). In the recent times, diabetes is listed under world's utmost critical health issues. Wound treatment procedures are complicated in diabetic individuals all over the world. Diabetic wound care not only involves high-cost, but also the primary cause of hospitalization, which can lead to amputation thereby reducing diabetic patient life expectancy. To lower the risk of amputation, wound healing requires the development of effective treatments. Traditional management systems for Diabetes are frequently chastised due to their high costs, difficulties in maintaining a sustainable supply chain and limited disposal alternatives. The worrisome rise in diabetes prevalence has sparked a surge of interest in the discovery of viable remedies to supplement existing treatments. Nanomaterials wound healing has a lot of potential for treating and preventing wound infections and it has recently gained popularity owing to its ability to transport drugs to the wound area in a regulated fashion, potentially overpowering the limits of traditional approaches. This research assessed several nanosystems, such as nanocarriers and nanotherapeutics, to explore how they can benefit in diabetic wound healing, with a focus on current obstacles and future prospects.

7.
J Colloid Interface Sci ; 530: 610-623, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30005238

RESUMEN

Water contamination by multidrug resistant (MDR) enteric bacteria can be considered as the foremost cause of gastrointestinal infections and poses a threat to global public health. Therefore, there is an urgent need to pursue unorthodox techniques with potential of community scale applications for purging of water borne pathogenic bacteria. We communicate visible-light assisted photocatalytic disinfection (PCD) of an enteric MDR bacterium; Enterobacter sp. using Fe-doped ZnO nanoparticles impregnated on Kaolinite (Clay) (ZnO/K). ZnO/K was synthesized by co-precipitation technique and was found to be more effective than Fe-doped ZnO (ZnO) and Kaolinite for PCD process. Analysis from fluorescence microscopy and electron microscopy (FESEM) proposed complete bacterial cell death via PCD due to damage of bacterial cell membrane. Experimental evidences indicated that O2- could be acting as the most significant component in disinfection of MDR Enterobacter sp. in visible-light assisted PCD process in presence of ZnO/K. Considering the experimental data of Resazurin assay, it is proposed that reactive oxygen species (ROS) generated during PCD might have impeded the oxido-reductase enzyme system of the bacteria and hence trammeling its metabolic activity. Crystal structure and particle size of ZnO/K was found to be unaltered during the photocatalytic process indicating its potential for reusability. When ZnO/K was exposed to HCT-116 Human Colorectal Carcinoma cell lines, about 79% cell survivability was noticed. The synthesized material was successful in completely disinfecting the target microorganism in Zebra Fish model, without producing any adverse effects on the Fish itself, further reinforcing its biocompatibility factor. High effectiveness of PCD process using ZnO/K under visible light in disinfecting enteric MDR bacteria, might have promising outcome as an alternative water disinfection technology to prevent the spread of infectious and resistant bacteria without producing any adverse effect on non-specific flora and fauna.


Asunto(s)
Silicatos de Aluminio/farmacología , Desinfección/métodos , Farmacorresistencia Bacteriana Múltiple , Enterobacter/efectos de los fármacos , Enterobacter/efectos de la radiación , Óxido de Zinc/farmacología , Silicatos de Aluminio/química , Animales , Catálisis , Arcilla , Enterobacter/metabolismo , Células HCT116 , Humanos , Luz , Nanopartículas/química , Nanopartículas/ultraestructura , Procesos Fotoquímicos , Aguas Residuales/microbiología , Purificación del Agua/métodos , Pez Cebra , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA