Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Opt ; 58(4): 1200-1209, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874172

RESUMEN

Recent advances in the creation of microlens arrays as holographic optical elements allow the creation of projector-based see-through light field displays suitable for augmented reality. These systems require an accurate calibration of the projector with relation to the microlens array, as any small misalignment causes the 3D reconstruction to fail. The methods reported so far require precise placement of the calibration camera w.r.t. the lens array screen, which affects the display configuration. We propose a calibration approach which is more robust, and which allows free camera placement. Hence, it does not limit the capabilities of the system. Both a homography-based technique and structured light play a central role in realizing such a method. The method was tested on a projection-based integral imaging display system consisting of a consumer-grade projector and a digitally designed holographic optical element based micromirror array screen. The calibration method compensates for the lens distortion, intrinsics, and positioning of the projector with relation to the screen. The method uses a single camera and does not require the use of obtrusive markers as reference. We give an in-depth explanation of the different steps of the algorithm, and verify the calibration using both a simulated and a real-world setup.

2.
Opt Lett ; 43(15): 3738-3741, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067668

RESUMEN

Concave micro-mirror arrays fabricated as holographic optical elements are used in projector-based light field displays due to their see-through characteristics. The optical axes of each micro-mirror in the array are usually made parallel to each other, which simplifies the fabrication, integral image rendering, and calibration process. However, this demands that the beam from the projector be collimated and made parallel to the optical axis of each elemental micro-mirror. This requires additional collimation optics, which puts serious limitations on the size of the display. In this Letter, we propose a solution to the above issue by introducing a new method to fabricate holographic concave micro-mirror array sheets and explain how they work in detail. 3D light field reconstructions of the size 20 cm×10 cm and 6 cm in depth are achieved using a conventional projector without any collimation optics.

3.
IEEE Trans Image Process ; 27(1): 379-393, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28981416

RESUMEN

We introduce an effective technique to enhance the images captured underwater and degraded due to the medium scattering and absorption. Our method is a single image approach that does not require specialized hardware or knowledge about the underwater conditions or scene structure. It builds on the blending of two images that are directly derived from a color-compensated and white-balanced version of the original degraded image. The two images to fusion, as well as their associated weight maps, are defined to promote the transfer of edges and color contrast to the output image. To avoid that the sharp weight map transitions create artifacts in the low frequency components of the reconstructed image, we also adapt a multiscale fusion strategy. Our extensive qualitative and quantitative evaluation reveals that our enhanced images and videos are characterized by better exposedness of the dark regions, improved global contrast, and edges sharpness. Our validation also proves that our algorithm is reasonably independent of the camera settings, and improves the accuracy of several image processing applications, such as image segmentation and keypoint matching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA