Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 616(7957): 443-447, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858073

RESUMEN

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.

2.
Astrobiology ; 14(6): 486-501, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24886217

RESUMEN

This work presents a method with which to automate simple aspects of geologic image analysis during space exploration. Automated image analysis on board the spacecraft can make operations more efficient by generating compressed maps of long traverses for summary downlink. It can also enable immediate automatic responses to science targets of opportunity, improving the quality of targeted measurements collected with each command cycle. In addition, automated analyses on Earth can process large image catalogs, such as the growing database of Mars surface images, permitting more timely and quantitative summaries that inform tactical mission operations. We present TextureCam, a new instrument that incorporates real-time image analysis to produce texture-sensitive classifications of geologic surfaces in mesoscale scenes. A series of tests at the Cima Volcanic Field in the Mojave Desert, California, demonstrated mesoscale surficial mapping at two distinct sites of geologic interest.


Asunto(s)
Geología/instrumentación , Algoritmos , Automatización , California , Procesamiento de Imagen Asistido por Computador , Fotograbar/instrumentación , Curva ROC , Propiedades de Superficie , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA