Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 19(6): e1011469, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384759

RESUMEN

The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10-1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998-2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1µg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Polisacáridos
2.
PLoS Pathog ; 17(11): e1010046, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788337

RESUMEN

Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Evasión Inmune , Infecciones por VIH/virología , Humanos , Estudios Prospectivos , Replicación Viral
3.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679760

RESUMEN

V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the development of these antibodies can provide insights for immunogen design. We used a deep-sequencing approach, together with neutralization phenotyping, to investigate the rate and complexity of escape from V3-glycan-directed bNAbs compared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rapidly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach >50% frequency. In contrast, escape from the bNAbs was mediated via multiple pathways and took longer, with escape first occurring through an increase in V1 loop length, which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 reversion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contemporaneous neutralization observed up to 3 years postinfection. Both the ssNAb response and the bNAb response were modulated by the presence/absence of the N332 glycan, indicating an overlap between the two epitopes. Thus, selective pressure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape pathway. This slower and incomplete viral escape resulted in prolonged exposure of the bNAb epitope, which may in turn have aided the maturation of the bNAb lineage.IMPORTANCE The development of an HIV-1 vaccine is of paramount importance, and broadly neutralizing antibodies are likely to be a key component of a protective vaccine. The V3-glycan-targeting bNAb responses are among the most promising vaccine targets, as they are commonly elicited during infection. Understanding the interplay between viral evolution and the development of these antibodies provides insights that may guide immunogen design. Our work contrasted the dynamics of the early strain-specific antibodies and the later broadly neutralizing responses to a common Env target (V3C3), showing slower and more complex escape from bNAbs. Constrained bNAb escape, together with evidence of contemporaneous autologous virus neutralization, supports the proposal that prolonged exposure of the bNAb epitope enabled the maturation of the bNAb lineage.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Epítopos/genética , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Evasión Inmune , Mutación , Pruebas de Neutralización , Factores de Tiempo
5.
NPJ Vaccines ; 7(1): 90, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927399

RESUMEN

Adjuvants can alter the magnitude, characteristics, and persistence of the humoral response to protein vaccination. HIV vaccination might benefit from tailored adjuvant choice as raising a durable and protective response to vaccination has been exceptionally challenging. Analysis of trials of partially effective HIV vaccines have identified features of the immune response that correlate with decreased risk, including high titers of V1V2-binding IgG and IgG3 responses with low titers of V1V2-binding IgA responses and enhanced Fc effector functions, notably antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, there has been limited opportunity to compare the effect of different adjuvants on these activities in humans. Here, samples from the AVEG015 study, a phase 1 trial in which participants (n = 112) were immunized with gp120SF-2 and one of six different adjuvants or combinations thereof were assessed for antibody titer, biophysical features, and diverse effector functions. Three adjuvants, MF59 + MTP-PE, SAF/2, and SAF/2 + MDP, increased the peak magnitude and durability of antigen-specific IgG3, IgA, FcγR-binding responses and ADCP activity, as compared to alum. While multiple adjuvants increased the titer of IgG, IgG3, and IgA responses, none consistently altered the balance of IgG to IgA or IgG3 to IgA. Linear regression analysis identified biophysical features including gp120-specific IgG and FcγR-binding responses that could predict functional activity, and network analysis identified coordinated aspects of the humoral response. These analyses reveal the ability of adjuvants to drive the character and function of the humoral response despite limitations of small sample size and immune variability in this human clinical trial.

6.
Nat Med ; 28(9): 1924-1932, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995954

RESUMEN

The Antibody Mediated Prevention trials showed that the broadly neutralizing antibody (bnAb) VRC01 prevented acquisition of human immunodeficiency virus-1 (HIV-1) sensitive to VRC01. Using AMP trial data, here we show that the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker-which quantifies the neutralization potency of antibodies in an individual's serum against an HIV-1 isolate-can be used to predict HIV-1 prevention efficacy. Similar to the results of nonhuman primate studies, an average PT80 of 200 (meaning a bnAb concentration 200-fold higher than that required to reduce infection by 80% in vitro) against a population of probable exposing viruses was estimated to be required for 90% prevention efficacy against acquisition of these viruses. Based on this result, we suggest that the goal of sustained PT80 <200 against 90% of circulating viruses can be achieved by promising bnAb regimens engineered for long half-lives. We propose the PT80 biomarker as a surrogate endpoint for evaluatinon of bnAb regimens, and as a tool for benchmarking candidate bnAb-inducing vaccines.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Humanos , Anticuerpos Neutralizantes , Biomarcadores , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH
7.
Viruses ; 13(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801437

RESUMEN

Rhesus macaques can be readily infected with chimeric simian-human immunodeficiency viruses (SHIV) as a suitable virus challenge system for testing the efficacy of HIV vaccines. Three Chinese-origin rhesus macaques (ChRM) were inoculated intravenously (IV) with SHIVC109P4 in a rapid serial in vivo passage. SHIV recovered from the peripheral blood of the final ChRM was used to generate a ChRM-adapted virus challenge stock. This stock was titrated for the intrarectal route (IR) in 8 ChRMs using undiluted, 1:10 or 1:100 dilutions, to determine a suitable dose for use in future vaccine efficacy testing via repeated low-dose IR challenges. All 11 ChRMs were successfully infected, reaching similar median peak viraemias at 1-2 weeks post inoculation but undetectable levels by 8 weeks post inoculation. T-cell responses were detected in all animals and Tier 1 neutralizing antibodies (Nab) developed in 10 of 11 infected ChRMs. All ChRMs remained healthy and maintained normal CD4+ T cell counts. Sequence analyses showed >98% amino acid identity between the original inoculum and virus recovered at peak viraemia indicating only minimal changes in the env gene. Thus, while replication is limited over time, our adapted SHIV can be used to test for protection of virus acquisition in ChRMs.


Asunto(s)
Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Línea Celular , Humanos , Macaca mulatta , Pase Seriado , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Carga Viral , Replicación Viral
8.
Front Immunol ; 12: 787603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069563

RESUMEN

Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Anti-VIH , VIH-1/inmunología , Inmunoglobulina G , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/inmunología , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología
9.
Cell Rep ; 33(8): 108430, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33238131

RESUMEN

Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an "arms race" between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term "switch redemption." Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses.


Asunto(s)
VIH-1/inmunología , Cambio de Clase de Inmunoglobulina/inmunología , Pruebas de Neutralización/métodos , Humanos
10.
Cell Host Microbe ; 24(4): 593-599.e3, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30269971

RESUMEN

Eliciting antibodies that neutralize a broad range of circulating HIV strains (broadly neutralizing antibodies [bnAbs]) represents a key priority for vaccine development. HIV superinfection (re-infection with a second strain following an established infection) has been associated with neutralization breadth, and can provide insights into how the immune system responds to sequential exposure to distinct HIV envelope glycoproteins (Env). Characterizing the neutralizing antibody (nAb) responses in four superinfected women revealed that superinfection does not boost memory nAb responses primed by the first infection or promote nAb responses to epitopes conserved in both infecting viruses. While one superinfected individual developed potent bnAbs, superinfection was likely not the driver as the nAb response did not target an epitope conserved in both viruses. Rather, sequential exposure led to nAbs specific to each Env but did not promote bnAb development. Thus, sequential immunization with heterologous Envs may not be sufficient to focus the immune response onto conserved epitopes.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , ARN Viral/inmunología , Sobreinfección/virología , Adulto , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Femenino , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , ARN Viral/sangre , ARN Viral/genética , Sobreinfección/sangre , Sobreinfección/complicaciones , Sobreinfección/tratamiento farmacológico , Tenofovir/uso terapéutico
11.
Nat Commun ; 9(1): 4136, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297708

RESUMEN

The developmental pathways of broadly neutralizing antibodies (bNAbs) against HIV are of great importance for the design of immunogens that can elicit protective responses. Here we show the maturation features of the HIV-neutralizing anti-V1V2 VRC26 lineage by simultaneously sequencing the exon together with the downstream intron of VRC26 members. Using the mutational landscapes of both segments and the selection-free nature of the intron region, we identify multiple events of amino acid mutational convergence in the complementarity-determining region 3 (CDR3) of VRC26 members, and determine potential intermediates with diverse CDR3s to a late stage bNAb from 2 years prior to its isolation. Moreover, we functionally characterize the earliest neutralizing intermediates with critical CDR3 mutations, with some emerging only 14 weeks after initial lineage detection and containing only ~6% V gene mutations. Our results thus underscore the utility of analyzing exons and introns simultaneously for studying antibody maturation and repertoire selection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Exones/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Intrones/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/genética , Epítopos/genética , Epítopos/inmunología , Exones/genética , Anticuerpos Anti-VIH/genética , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Intrones/genética , Mutación
12.
Cell Rep ; 25(11): 3123-3135.e6, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540944

RESUMEN

Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif. A cocrystal structure of CAP228-16H bound to a V2 peptide identified a IGLV3-21 gene-encoded DDxD motif that is used to bind K169, with a mechanism that allows CAP228-16H to recognize more globally relevant V2 immunotypes. Overall, these data further our understanding of the development of cross-reactive, V2-binding, antiviral antibodies and effectively expand the human light chain repertoire able to respond to RV144-like immunogens.


Asunto(s)
Vacunas contra el SIDA/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Cadenas Ligeras de Inmunoglobulina/metabolismo , Lisina/metabolismo , Alelos , Secuencia de Aminoácidos , Anticuerpos Anti-VIH/aislamiento & purificación , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Modelos Moleculares , Péptidos/metabolismo , Unión Proteica , Donantes de Tejidos
13.
Bioengineered ; 5(5): 293-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482230

RESUMEN

During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria.


Asunto(s)
Ingeniería Metabólica/métodos , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA